Ejemplo n.º 1
0
 def print_best(self, gav, iter_num):
     print("Iteration number " + str(iter_num))
     with open("output.txt", 'a') as file:
         file.write("Iteration number: " + str(iter_num) + "\n")
         file.write("    Best fitness: " + str(gav[0].fitness) + "\n")
         overall_value = 0
         overall_weight = 0
         for i in range(self.items):
             if gav[0].knapsack[i] == 1:
                 overall_value = overall_value + self.prices[i]
                 overall_weight = overall_weight + self.weights[i]
                 print("Item " + str(i) + " with value " +
                       str(self.prices[i]) + " and weight " +
                       str(self.weights[i]))
                 file.write("    Item " + str(i) + " with value " +
                            str(self.prices[i]) + " and weight " +
                            str(self.weights[i]) + "\n")
         print("Overall value is " + str(overall_value) + "/" +
               str(sum(self.prices)))
         print("Overall weight is " + str(overall_weight) + "/" +
               str(self.capacity))
         print()
         file.write("    Overall value is " + str(overall_value) + "\n")
         file.write("    Overall weight is " + str(overall_weight) + "\n")
         file.write(
             "    Fitness average: " +
             str(round(utils.average(gav, self.data.ga_popsize), 3)) + "\n")
         file.write(
             "    Fitness deviation: " +
             str(round(utils.deviation(gav, self.data.ga_popsize), 3)) +
             "\n")
 def print_best(self, gav, iter_num):
     print("Best: " + gav[0].str + " (" + str(gav[0].fitness) + ")")
     with open("output.txt", 'a') as file:
         file.write("Best: " + gav[0].str + " (" + str(gav[0].fitness) + ")\n")
         file.write("    Iteration number: " + str(iter_num) + "\n")
         file.write("    Fitness average: " + str(round(utils.average(gav, self.data.ga_popsize), 3)) + "\n")
         file.write("    Fitness deviation: " + str(round(utils.deviation(gav, self.data.ga_popsize), 3)) + "\n")
Ejemplo n.º 3
0
 def deviation_local_optima(self, population):
     window = self.data.ga_popsize / self.data.local_optima_groups_num
     deviation_list = []
     for iteration in range(self.data.local_optima_groups_num):
         start = int(iteration * window)
         end = int((iteration + 1) * window)
         deviation_list.append(
             round(deviation(population[start:end], int(window)), 3))
     self.local_optima_signals.append(deviation_list)