Ejemplo n.º 1
0
    def test_mask(self, benchmark, prefix, drop, shared_dist_ctx, io_backend):
        io_backend = backends_by_name[io_backend]
        hdr = os.path.join(prefix, K2IS_FILE)
        flist = filelist(hdr)

        ctx = shared_dist_ctx
        ds = ctx.load(filetype="k2is", path=hdr, io_backend=io_backend)

        def mask():
            return np.ones(ds.shape.sig, dtype=bool)

        udf = ApplyMasksUDF(mask_factories=[mask], backends=('numpy', ))

        # warmup executor
        ctx.run_udf(udf=udf, dataset=ds)

        if drop == "cold_cache":
            drop_cache(flist)
        elif drop == "warm_cache":
            warmup_cache(flist)
        else:
            raise ValueError("bad param")

        benchmark.pedantic(
            ctx.run_udf,
            kwargs=dict(udf=udf, dataset=ds),
            warmup_rounds=0,
            rounds=1,
            iterations=1,
        )
Ejemplo n.º 2
0
    def test_mask(self, benchmark, drop, shared_dist_ctx, lt_ctx, context,
                  chunked_emd):
        if context == 'dist':
            ctx = shared_dist_ctx
        elif context == 'inline':
            ctx = lt_ctx
        else:
            raise ValueError

        ds = chunked_emd

        def mask():
            return np.ones(ds.shape.sig, dtype=bool)

        udf = ApplyMasksUDF(mask_factories=[mask], backends=('numpy', ))

        # warmup executor
        ctx.run_udf(udf=udf, dataset=ds)

        if drop == "cold_cache":
            drop_cache([ds.path])
        elif drop == "warm_cache":
            warmup_cache([ds.path])
        else:
            raise ValueError("bad param")

        benchmark.pedantic(ctx.run_udf,
                           kwargs=dict(udf=udf, dataset=ds),
                           warmup_rounds=0,
                           rounds=1,
                           iterations=1)
Ejemplo n.º 3
0
    def test_sparse_roi(self, benchmark, prefix, drop, io_backend,
                        shared_dist_ctx, sparsity):
        io_backend = backends_by_name[io_backend]
        mib_hdr = os.path.join(prefix, MIB_FILE)
        flist = filelist(mib_hdr)

        ctx = shared_dist_ctx
        ds = ctx.load(filetype="mib", path=mib_hdr, io_backend=io_backend)

        sparse_roi = np.zeros(ds.shape.nav.size, dtype=bool)
        sparse_roi[::sparsity] = True

        def mask():
            return np.ones(ds.shape.sig, dtype=bool)

        udf = ApplyMasksUDF(mask_factories=[mask], backends=('numpy', ))

        # warmup executor
        ctx.run_udf(udf=udf, dataset=ds)

        if drop == "cold_cache":
            drop_cache(flist)
        elif drop == "warm_cache":
            warmup_cache(flist)
        else:
            raise ValueError("bad param")

        benchmark.pedantic(
            ctx.run_udf,
            kwargs=dict(udf=udf, dataset=ds, roi=sparse_roi),
            warmup_rounds=0,
            rounds=1,
            iterations=1,
        )
Ejemplo n.º 4
0
def test_sequential(benchmark, prefix, drop):
    hdr = os.path.join(prefix, K2IS_FILE)

    flist = filelist(hdr)

    if drop == "cold_cache":
        drop_cache(flist)
    elif drop == "warm_cache":
        warmup_cache(flist)
    else:
        raise ValueError("bad param")

    benchmark.pedantic(warmup_cache,
                       args=(flist, ),
                       warmup_rounds=0,
                       rounds=1,
                       iterations=1)