print ("Reading the training data...") sys.stdout.flush() TRAIN_DIR = "train/" TEST_DIR = "test/" # use HOG as a list of features # reading in the data. This takes a while train_imgs = utils.read_folder(TRAIN_DIR, 0, ntrain, flatten = False) print ("\nDone!") sys.stdout.flush() print ("Getting HOG3 of the data...") sys.stdout.flush() # also takes a while X = utils.getHOG3(train_imgs) print ("\nDone!") sys.stdout.flush() X = np.insert(X, 0, 1.0, axis = 1) theta = np.random.randn(X.shape[1], 10) * 0.0001 y = utils.read_labels('trainLabels.csv', 0, ntrain) best_val = -1 best_softmax = None X_train, X_val, y_train, y_val = cross_validation.train_test_split(X, y, test_size = 0.1) print "y_train.shape=", y_train.shape print "y_val.shape=", y_val.shape print "X_train.shape=", X_train.shape print "X_val.shape=", X_val.shape sys.stdout.flush()
ntrain = 50000 print ("Reading the training data...") sys.stdout.flush() TRAIN_DIR = "train/" # use HOG as a list of features train_imgs = utils.read_folder(TRAIN_DIR, 0, ntrain, flatten = False) print ("\nDone!") sys.stdout.flush() print ("Getting HOG3 of the data...") sys.stdout.flush() X = utils.getHOG3(train_imgs, cpb=(1,1)) print ("\nDone!") sys.stdout.flush() X = np.insert(X, 0, 1.0, axis = 1) theta = np.random.randn(X.shape[1], 10) * 0.0001 y = utils.read_labels('trainLabels.csv', 0, ntrain) best_val = -1 best_softmax = None X_train, X_val, y_train, y_val = cross_validation.train_test_split(X, y, test_size = 0.1) print "y_train.shape=", y_train.shape print "y_val.shape=", y_val.shape print "X_train.shape=", X_train.shape print "X_val.shape=", X_val.shape sys.stdout.flush()