Ejemplo n.º 1
0
    def simulate_state(self):
        n_qubits = self.n_qubits
        circuit = self.qc

        buckets, data_dict, bra_vars, ket_vars = qtree.optimizer.circ2buckets(
            n_qubits, circuit)

        graph = qtree.graph_model.buckets2graph(buckets,
                                               ignore_variables=ket_vars+bra_vars)

        peo_ints, treewidth = utils.get_locale_peo(graph, utils.n_neighbors)

        peo = [qtree.optimizer.Var(var, size=graph.nodes[var]['size'],
                        name=graph.nodes[var]['name'])
                    for var in peo_ints]

        peo = ket_vars + bra_vars + peo
        perm_buckets, perm_dict = qtree.optimizer.reorder_buckets(buckets, peo)
        ket_vars = sorted([perm_dict[idx] for idx in ket_vars], key=str)
        bra_vars = sorted([perm_dict[idx] for idx in bra_vars], key=str)

        initial_state = target_state = 0
        slice_dict = qtree.utils.slice_from_bits(initial_state, ket_vars)
        slice_dict.update(
            qtree.utils.slice_from_bits(target_state, bra_vars)
        )
        sliced_buckets = qtree.np_framework.get_sliced_np_buckets(
            perm_buckets, data_dict, slice_dict)
        result = qtree.optimizer.bucket_elimination(
            sliced_buckets, qtree.np_framework.process_bucket_np)
        return result
Ejemplo n.º 2
0
def simulate_circ(circuit, n_qubits):
    buckets, data_dict, bra_vars, ket_vars = qtree.optimizer.circ2buckets(
        n_qubits, circuit)

    graph = qtree.graph_model.buckets2graph(
        buckets,
        ignore_variables=bra_vars+ket_vars)

    peo, nghs = utils.get_locale_peo(graph, utils.n_neighbors)
    peo = qtree.graph_model.indices_to_vars(peo, graph)
    
    # place bra and ket variables to beginning, so these variables
    # will be contracted first
    #peo, treewidth = qtree.graph_model.get_peo(graph)

    peo = ket_vars + bra_vars + peo
    perm_buckets, perm_dict = qtree.optimizer.reorder_buckets(buckets, peo)

    # extract bra and ket variables from variable list and sort according
    # to qubit order
    ket_vars = sorted([perm_dict[idx] for idx in ket_vars], key=str)
    bra_vars = sorted([perm_dict[idx] for idx in bra_vars], key=str)

    # Take the subtensor corresponding to the initial state
    initial_state = target_state = 0
    slice_dict = qtree.utils.slice_from_bits(initial_state, ket_vars)
    slice_dict.update(
        qtree.utils.slice_from_bits(target_state, bra_vars)
    )
    sliced_buckets = qtree.np_framework.get_sliced_np_buckets(
        perm_buckets, data_dict, slice_dict)
    
    with timing('time_raw', callback=append_to(profile)):
        result = qtree.optimizer.bucket_elimination(
            sliced_buckets, qtree.np_framework.process_bucket_np)
Ejemplo n.º 3
0
def get_qbb_peo(graph):
    try:
        peo, tw = qtree.graph_model.get_peo(graph)
        fail = False
    except:
        print('QBB fail, nodes count:', graph.number_of_nodes())
        peo, nghs = utils.get_locale_peo(graph, utils.n_neighbors)
        fail = True
    return peo, fail
Ejemplo n.º 4
0
def optimize_order(graph, ordering_algo='qbb'):
    if ordering_algo == 'qbb':
        peo, tw = qtree.graph_model.get_peo(graph, int_vars=True)
    if ordering_algo == 'nghs':
        peo, _nghs = utils.get_locale_peo(graph, utils.n_neighbors)
        tw = max(_nghs) - 1
    mapping = {v: i for i, v in enumerate(peo)}
    tensors = expr.get_tensors_from_graph(graph)
    reorder_tensors(tensors, peo)
    graph = nx.relabel_nodes(graph, mapping, copy=True)
    return peo, tw, graph
Ejemplo n.º 5
0
def _optimise_graph(graph):
    peo, nghs = utils.get_locale_peo(graph, utils.n_neighbors)
    graph_opt, slice_dict = utils.reorder_graph(graph, peo)
    return graph_opt, nghs
Ejemplo n.º 6
0
plt.savefig('figures/rect_cost_vs_nodes_T_p1.png')
# -

# # Finding biggest tacklable task
# ## Full ordering

# +
graph, N = qaoa.get_test_expr_graph(25, 1, type='randomreg', degree=3)

print(N)
# -

# ### Naive (degree-based local) peo

# %%time
peo, nghs = utils.get_locale_peo(graph, utils.n_neighbors)
graph_relabel, slice_dict = utils.reorder_graph(graph, peo)
# +
costs, flops = qtree.graph_model.cost_estimator(graph_relabel)
print(max(costs)/1e9)
print(max(flops)/1e9)
utils.plot_cost(costs, flops)

#nx.draw_kamada_kawai(graph, node_size=3)
# -


neigh_plot(nghs)


Ejemplo n.º 7
0
def n_peo(graph):
    return utils.get_locale_peo(graph, utils.n_neighbors)