def restore_model(agents, path=None): if path: agents[0].restore(path) idex = path.split("/")[-1] else: idex = get_max_idx("./saved_model") path = os.path.join("./saved_model/", str(idex)) agents[0].restore(path) logging.info("Agent model restored at {}".format(path)) return int(idex)
def restore_model(agents, path=None): alg_tag = "current_models/CNN_DQN" if use_dqn( ) else "current_models/CNN_A2C" try: if path: agents[0].restore(path) idex = path.split("/")[-1] else: idex = get_max_idx(alg_tag + fmt_hyperparameters()) path = os.path.join(alg_tag + fmt_hyperparameters(), str(idex)) agents[0].restore(path) logging.info("Agent model restored at {}".format(path)) except: print(sys.exc_info()) logging.info("No saved Model!!") idex = 0 return int(idex)
def main(unused_argv): # logging.info("Train on " + fmt_output_channels()) env, info_state_size, num_actions, begin = init_env() cnn_parameters, hidden_layers_sizes, kwargs, ret, max_len = init_hyper_paras( ) with tf.Session() as sess: # rival_path = "rivals/a2c_0" # rival_path = "../saved_model/CNN_A2C_2_2_4_4_8_8_16**_32_64_32" rival_path = "../saved_model/CNN_A2C" + fmt_hyperparameters() rival_model = os.path.join(rival_path, str(get_max_idx(rival_path))) agents = init_agents(sess, info_state_size, num_actions, cnn_parameters, hidden_layers_sizes, rival_model, **kwargs) train(agents, env, ret, max_len, begin) ret = evaluate(agents, env) stat(ret, begin)