def main():
    """main function"""
    args = arg_parse()
    message = ProbeMessage(args.verbose)
    measurements = get_measurements(args.measurement_id, args.key)
    parsed_measurements = parse_measurements(measurements, args.name, message)
    check_measurements(parsed_measurements, args, message)
    if len(measurements) < args.crit_probes:
        print 'ERROR: only recived {} messages'.format(len(measurements))
        sys.exit(2)
    elif len(measurements) < args.warn_probes:
        print 'WARN: only recived {} messages'.format(len(measurements))
        sys.exit(1)
    message.exit(args)
def main():
    """main function"""
    args = arg_parse()
    message = ProbeMessage(args.verbose)
    measurements =  get_measurements(args.measurement_id, args.key)
    parsed_measurements = parse_measurements(
            measurements, args.name, message)
    check_measurements(parsed_measurements, args, message)
    if len(measurements) < args.crit_probes:
        print 'ERROR: only recived {} messages'.format(len(measurements))
        sys.exit(2)
    elif len(measurements) < args.warn_probes:
        print 'WARN: only recived {} messages'.format(len(measurements))
        sys.exit(1)
    message.exit(args)
def main(hparams):
    # set up perceptual loss
    device = 'cuda:0'
    percept = PerceptualLoss(
            model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
    )

    utils.print_hparams(hparams)

    # get inputs
    xs_dict = model_input(hparams)

    estimators = utils.get_estimators(hparams)
    utils.setup_checkpointing(hparams)
    measurement_losses, l2_losses, lpips_scores, z_hats = utils.load_checkpoints(hparams)

    x_hats_dict = {model_type : {} for model_type in hparams.model_types}
    x_batch_dict = {}

    A = utils.get_A(hparams)
    noise_batch = hparams.noise_std * np.random.standard_t(2, size=(hparams.batch_size, hparams.num_measurements))



    for key, x in xs_dict.items():
        if not hparams.not_lazy:
            # If lazy, first check if the image has already been
            # saved before by *all* estimators. If yes, then skip this image.
            save_paths = utils.get_save_paths(hparams, key)
            is_saved = all([os.path.isfile(save_path) for save_path in save_paths.values()])
            if is_saved:
                continue

        x_batch_dict[key] = x
        if len(x_batch_dict) < hparams.batch_size:
            continue

        # Reshape input
        x_batch_list = [x.reshape(1, hparams.n_input) for _, x in x_batch_dict.items()]
        x_batch = np.concatenate(x_batch_list)

        # Construct noise and measurements


        y_batch = utils.get_measurements(x_batch, A, noise_batch, hparams)

        # Construct estimates using each estimator
        for model_type in hparams.model_types:
            estimator = estimators[model_type]
            x_hat_batch, z_hat_batch, m_loss_batch = estimator(A, y_batch, hparams)

            for i, key in enumerate(x_batch_dict.keys()):
                x = xs_dict[key]
                y_train = y_batch[i]
                x_hat = x_hat_batch[i]

                # Save the estimate
                x_hats_dict[model_type][key] = x_hat

                # Compute and store measurement and l2 loss
                measurement_losses[model_type][key] = m_loss_batch[key]
                l2_losses[model_type][key] = utils.get_l2_loss(x_hat, x)
                lpips_scores[model_type][key] = utils.get_lpips_score(percept, x_hat, x, hparams.image_shape)
                z_hats[model_type][key] = z_hat_batch[i]

        print('Processed upto image {0} / {1}'.format(key+1, len(xs_dict)))

        # Checkpointing
        if (hparams.save_images) and ((key+1) % hparams.checkpoint_iter == 0):
            utils.checkpoint(x_hats_dict, measurement_losses, l2_losses, lpips_scores, z_hats, save_image, hparams)
            x_hats_dict = {model_type : {} for model_type in hparams.model_types}
            print('\nProcessed and saved first ', key+1, 'images\n')

        x_batch_dict = {}

    # Final checkpoint
    if hparams.save_images:
        utils.checkpoint(x_hats_dict, measurement_losses, l2_losses, lpips_scores, z_hats, save_image, hparams)
        print('\nProcessed and saved all {0} image(s)\n'.format(len(xs_dict)))

    if hparams.print_stats:
        for model_type in hparams.model_types:
            print(model_type)
            measurement_loss_list = list(measurement_losses[model_type].values())
            l2_loss_list = list(l2_losses[model_type].values())
            mean_m_loss = np.mean(measurement_loss_list)
            mean_l2_loss = np.mean(l2_loss_list)
            print('mean measurement loss = {0}'.format(mean_m_loss))
            print('mean l2 loss = {0}'.format(mean_l2_loss))

    if hparams.image_matrix > 0:
        utils.image_matrix(xs_dict, x_hats_dict, view_image, hparams)

    # Warn the user that some things were not processsed
    if len(x_batch_dict) > 0:
        print('\nDid NOT process last {} images because they did not fill up the last batch.'.format(len(x_batch_dict)))
        print('Consider rerunning lazily with a smaller batch size.')
    # makes signals
    xs = np.random.normal(size=(3, image_size**2))
    xs[2] = xs[0] + xs[1]

    # random anchors
    anchors = np.random.normal(size=(number_of_anchors, image_size**2))

    # interefere with anchors
    x1_inter = interfere_with_anchors(image_size, xs[0], anchors)
    x2_inter = interfere_with_anchors(image_size, xs[1], anchors)
    x1_plus_x2_inter = interfere_with_anchors(image_size, xs[2], anchors)

    opu_input = np.vstack((x1_inter, x2_inter, x1_plus_x2_inter))

    # get quantized measurements
    y, A = get_measurements(opu_input, num_of_rows_in_A)
    y, y_quant = quantise_measurements(y, num_bits)
    floor = 0
    y_quant[y_quant < floor] = 0

    # put measurements into distance matrices
    all_D_quant_x1, all_D_quant_x2, all_D_quant_x1_plus_x2 = make_D_ensembles(
        y_quant, number_of_anchors)

    # for storing results
    manual = np.zeros([num_of_rows_in_A,
                       number_of_anchors + 1 - 2]).astype('complex128')
    direct = np.zeros([num_of_rows_in_A,
                       number_of_anchors + 1 - 2]).astype('complex128')
    manual_gd = np.zeros([num_of_rows_in_A,
                          number_of_anchors + 1 - 2]).astype('complex128')