Ejemplo n.º 1
0
def indicators():
    tickers = get_tickers('IBOV')

    start, end = get_interval(365)
    df = get_data(
        tickers=tickers,
        columns=["Open", "High", "Low", "Adj Close"],
        start=start,
        end=end,
    )

    ibov = get_data(tickers="^BVSP",
                    columns=["Adj Close"],
                    start=start,
                    end=end)

    all_rsi = get_rsi_info(df.copy(), tickers)
    all_stochastic = get_stochastic_info(df.copy(), tickers)
    all_beta = get_beta_info(df.copy(), tickers, ibov["Adj Close"])

    indicators = {}
    for ticker in tickers:
        ticker = ticker.replace(".SA", "")

        # Get nested data
        price = all_rsi[ticker]["price"]
        variation = all_rsi[ticker]["variation"]
        mme80_is_up = all_stochastic[ticker]["mme80_is_up"]
        mm50_is_up = all_rsi[ticker]["mm50_is_up"]
        beta = all_beta[ticker]["beta"]
        corr = all_beta[ticker]["corr"]
        std_asset = all_beta[ticker]["std_asset"]
        std_bench = all_beta[ticker]["std_bench"]

        # Delete unnecessary data
        del all_rsi[ticker]["price"]
        del all_rsi[ticker]["variation"]
        del all_rsi[ticker]["mm50_is_up"]
        del all_stochastic[ticker]["mme80_is_up"]
        del all_stochastic[ticker]["price"]
        del all_stochastic[ticker]["variation"]

        indicators[ticker] = {
            "price": price,
            "variation": variation,
            "mme80_is_up": mme80_is_up,
            "mm50_is_up": mm50_is_up,
            "beta": beta,
            "corr": corr,
            "std_asset": std_asset,
            "std_bench": std_bench,
            "rsi": all_rsi[ticker],
            "stochastic": all_stochastic[ticker],
        }
    return jsonify(indicators)
Ejemplo n.º 2
0
def api():
    tickers = get_tickers('IBOV')
    start, end = get_interval(365)
    df = get_data(tickers=tickers,
                  columns=["Open", "High", "Adj Close"],
                  start=start,
                  end=end)

    all_rsi = get_rsi_info(df, tickers)

    return jsonify(all_rsi)
Ejemplo n.º 3
0
def all_stochastic():

    tickers = get_tickers('IBOV')
    start, end = get_interval(120)
    df = get_data(tickers=tickers,
                  columns=["High", "Low", "Adj Close"],
                  start=start,
                  end=end)

    all_stochastic = get_stochastic_info(df, tickers)

    return jsonify(all_stochastic)
Ejemplo n.º 4
0
#!/usr/bin/python

import utils
from stockmarket import Stock, Market

sap_tickers = utils.get_tickers() # Standard & Poor's tickers
stocks = utils.get_stocks_from_tickerslist(sap_tickers)
dates = utils.get_dates(stocks[0].ticker) 
market = Market(stocks)

spread = []
market_performance = []
dates_shown = []
STEP = 30

for i in range(STEP, len(stocks[0].values)-STEP, STEP):
    previous = i - STEP
    now = i
    next = i + STEP
    strong_stocks = [s for s in stocks 
                     if s.getOffensive(previous, now) >= 100 and s.getDefensive(previous, now) <= 100]
    weak_stocks = [s for s in stocks 
                   if s.getOffensive(previous, now) <= 100 and s.getDefensive(previous, now) >= 100]
 
    mean_strong_performance = utils.mean([s.getPerformance(now, next) for s in strong_stocks])
    mean_weak_performance = utils.mean([s.getPerformance(now, next) for s in weak_stocks])
    spread.append(mean_strong_performance - mean_weak_performance)
    market_performance.append(market.getPerformance(previous, now)) # to look for correlations with the spread
    dates_shown.append(dates[now]) # dates to be shown in the X axis

# format the data properly and save it in a file
Ejemplo n.º 5
0
#!/usr/bin/python

import utils
import urllib2

utils.download_sap_tickers()
sap_tickers = utils.get_tickers()

for ticker in sap_tickers:
    try:
        utils.download_historical_daily_data(ticker, 2000, 2009)
    except urllib2.HTTPError:
        print 'data not found for ticker: %s' % ticker
Ejemplo n.º 6
0
def run(
    min_share_price,
    max_share_price,
    min_dv,
    n_fast,
    n_slow,
    quick,
    n_retries,
    time_zone,
):
    tries = 0
    url, key, secret = credentialing()
    conn = trade_api.StreamConn(base_url=url,
                                key_id=key,
                                secret_key=secret,
                                data_stream="polygon")
    api = trade_api.REST(base_url=url, key_id=key, secret_key=secret)

    def create_dict(symbols):
        """
        creates a master dictionary with each symbol pointing to a dataframe of data collected from the stream. 
        """
        dct = {}

        def create_dataframe():
            """
            Helper function to create a dataframe that is the value for each SYMBOL key in the dictionary
            """
            column_names = ["open", "high", "low", "close", "volume"]

            def get_trading_start():
                """
                Helper function gets the start of the trading day
                """
                today = datetime.today().date()
                start = datetime(today.year,
                                 today.month,
                                 today.day,
                                 hour=8,
                                 minute=30)
                return start

            idx = pd.date_range(get_trading_start(), periods=900, freq="T")
            df = pd.DataFrame(columns=column_names, index=idx)
            return df

        for symbol in symbols:
            dct[symbol] = create_dataframe()

        return dct

    symbols_to_watch = get_tickers(api,
                                   min_share_price,
                                   max_share_price,
                                   min_dv,
                                   quick=quick)
    logging.info(f"Tickers added.")
    master_dct = create_dict(symbols_to_watch)

    open_orders = {}
    positions = {}

    def cancel_old_orders(api, orders, symbol, timezone, order_expiration=2):
        """
        Cancels orders that exceed order_expiration in minutes

        : param api: Alpaca REST endpoint
        : dict orders: a dictionary with symbols for keys and orders for values
        : str symbol: a string with the symbol for the stock
        : int order_expiration: int for minutes to leave orders open 
        """
        current_time = pd.Timestamp(datetime.now().astimezone(timezone))
        order_for_symbol = orders.get(symbol, None)
        if order_for_symbol:
            if ((order_for_symbol.status == "held"
                 or order_for_symbol.status == "new")
                    and order_for_symbol.submitted_at +
                    timedelta(minutes=order_expiration) > current_time):
                try:
                    api.cancel_order(order_for_symbol.id)
                    logging.info(f"Order Cancelled for {symbol}")
                except Exception as e:
                    logging.debug(e)
                    logging.debug(
                        f"Unable to cancel order id {order_for_symbol}")

    @conn.on(r"^trade_updates$")
    async def handle_trade_update(conn, channel, data):
        symbol = data.order["symbol"]
        # get the last order, or return a None value
        last_order = open_orders.get(symbol, None)
        # if the value is None (there is no order for the symbol) then loop does not cover
        # if the last_order is True, then loop
        if last_order is not None:
            event = data.event
            """
            ***we are testing with only buying 1 share for each positive signal. no partial fills yet***

            if event == "partial_fill":
                qty = int(data.order["filled_qty"])
                if data.order["side"] == "sell":
                    qty = qty * -1
                positions[symbol] = positions.get(symbol, 0) - partial_fills.get(
                    symbol, 0
                )
                partial_fills[symbol] = qty
                positions[symbol] += qty
                open_orders[symbol] = data.order
                print(f"partial fill of {symbol}")
            """
            if event == "fill":
                qty = int(data.order["filled_qty"])
                if data.order["side"] == "sell":
                    qty = qty * -1
                positions[symbol] = positions.get(
                    symbol, 0)  # - partial_fills.get(symbol, 0)
                # partial_fills[symbol] = 0
                positions[symbol] += qty
                open_orders[symbol] = None
                logging.info(f"Fill of {symbol}")
            elif event == "canceled" or event == "rejected":
                # partial_fills[symbol] = 0
                open_orders[symbol] = None
                logging.info(f"{symbol} cancelled or rejected")
                # print(f"{symbol} cancelled or rejected.")

    @conn.on(r"^AM$")
    async def on_minute_bars(conn, channel, data):
        now = datetime.strptime(datetime.now().strftime("%y-%m-%d %H:%M"),
                                "%y-%m-%d %H:%M")
        master_dct[data.symbol].loc[now] = {
            "open": data.open,
            "high": data.high,
            "low": data.low,
            "close": data.close,
            "volume": data.volume,
        }

        # if the macd is above one, make a purchase of 1 share
        closes = master_dct[data.symbol].close[:now]
        hist = macd(closes, n_fast=n_fast, n_slow=n_slow)
        order_history = {}
        # only buy if macd is positive and symbol not already bought or open_order submitted
        if hist[-1] > 0 and not (positions.get(data.symbol, None)
                                 or open_orders.get(data.symbol, None)):
            try:
                buy = api.submit_order(
                    symbol=data.symbol,
                    qty=1,
                    side="buy",
                    type="limit",
                    time_in_force="gtc",
                    limit_price=str(data.close),
                    order_class="bracket",
                    take_profit=dict(limit_price=f"{data.close * 1.02}"),
                    stop_loss=dict(
                        stop_price=f"{data.close * 0.99}",
                        limit_price=f"{data.close * 0.99}",
                    ),
                )
                open_orders[data.symbol] = buy
                logging.info(f"Submitted order 1 share of {data.symbol}")
            except Exception as e:
                logging.debug(e)
                logging.debug(f"buy order for {data.symbol} not processed...")

        cancel_old_orders(api, open_orders, data.symbol, time_zone)

    channels_to_listen = [f"AM.{symbol}" for symbol in symbols_to_watch]
    channels_to_listen.insert(0, "trade_updates")

    def run_ws(conn, channels):
        try:
            print("listening")
            conn.run(channels)
        except Exception as e:
            print(e)
            conn.close()
            sleep(5)
            run_ws(conn, channels)

    run_ws(conn, channels_to_listen)