def to_dict(self) -> dict: result: dict = {} result["decisionStrategy"] = is_none(self.decisionStrategy, "UNANIMOUS") result["name"] = self.name result["type"] = is_none(self.type, "role") result["roles"] = self.roles result["logic"] = is_none(self.logic, "POSITIVE") return result
def from_dict(obj) -> 'ScopeRoleRepresentation': assert isinstance(obj, dict) obj = key_dict_to_camel_case(obj) id = obj.get("id") name = obj.get("name") containerId = obj.get("containerId") composite = is_none(obj.get("composite"), False) clientRole = is_none(obj.get("clientRole"), True) return ScopeRoleRepresentation(id, name, containerId, composite, clientRole)
def from_dict(obj) -> 'PolicieRoleRepresentation': assert isinstance(obj, dict) obj = key_dict_to_camel_case(obj) decisionStrategy = is_none(obj.get("decisionStrategy"), "UNANIMOUS") name = obj.get("name") type = is_none(obj.get("type"), "role") roles = obj.get("roles") logic = is_none(obj.get("logic"), "POSITIVE") return PolicieRoleRepresentation(name, roles, type, decisionStrategy, logic)
def from_dict(obj: dict) -> 'GroupRepresentation': assert isinstance(obj, dict) obj = key_dict_to_camel_case(obj) id = obj.get("id") name = obj.get("name") path = obj.get("path") attributes = is_none(obj.get("attributes"), {}) realmRoles = is_none(obj.get("realmRoles"), []) subGroups = is_none(obj.get("subGroups"), []) return GroupRepresentation(id, name, path, attributes, realmRoles, subGroups)
def __init__(self, sentence_tokenizer='normal', raw_reviews_path=None): """ Sentence Tokenizers: normal, punkt """ self.sent_tokenize = sent_tokenize if sentence_tokenizer == 'normal': pass elif sentence_tokenizer == 'punkt': self.sent_tokenize = nltk.data.load( 'tokenizers/punkt/english.pickle').tokenize self.tokenizer = utils.get_tokenizer() if utils.is_none(raw_reviews_path): self.raw_reviews = utils.get_raw_test_reviews(review='tizi') else: with open(raw_reviews_path, 'r') as fi: self.raw_reviews = [line.rstrip() for line in fi] self.data = [] for _ in range(6): self.data.append([]) self.categories = ['food', 'service', 'price', 'place'] self.conjunctions = [ "tetapi sayangnya", "namun", "tetapi", "walaupun", "akan tetapi", "sayangnya", "hanya sayang", "sayang", "meski", "walau", "but" ]
def from_dict(obj) -> 'RealmRepresentation': assert isinstance(obj, dict) obj = key_dict_to_camel_case(obj) enabled = is_none(obj.get("enabled"), True) id = obj.get("id") realm = obj.get("realm") return RealmRepresentation(enabled, id, realm)
class Temperature(webapp2.RequestHandler): def get(self): request, response = self.request, self.response mode, qty_str, jsonp_callback = request.get('mode'), request.get( 'q'), request.get('callback') try: qty = float(qty_str) except Exception, e: qty = None converted = None if not utils.is_none(qty): converted = convert_temperature(mode, qty) if not utils.is_none(converted): result = {"mode": mode, "qty": qty, "v": converted} else: result = invalid_request utils.write_jsonp_output(response, result, jsonp_callback)
################## # Pipeline setup # ################## # Read in parameter file P.get_parameters("config_rna.yml") # Small edits to config to enable cluster usage P.PARAMS["cluster_queue_manager"] = P.PARAMS.get("pipeline_cluster_queue_manager") P.PARAMS["conda_env"] = os.path.basename(os.environ["CONDA_PREFIX"]) # Make sure that params dict is typed correctly for key in P.PARAMS: if is_none(P.PARAMS[key]): P.PARAMS[key] = None elif is_on(P.PARAMS): P.PARAMS[key] = True # Global variables CREATE_BIGWIGS = P.PARAMS.get("run_options_bigwigs") CREATE_HUB = P.PARAMS.get("run_options_hub") ############# # Pipeline # ############# @follows(mkdir("statistics"), mkdir("statistics/fastqc")) @transform("*.fastq.gz", regex(r"(.*).fastq.gz"), r"statistics/fastqc/\1_fastqc.zip")
def _set(cls, lvl, func): assert is_none(cls.contents.get( str(lvl))), "ambiguity in levels hierarchy" cls.contents[str(lvl)] = func