Ejemplo n.º 1
0
def store_instances(layers, compression):
    conn = psycopg2.connect(dbname=utils.dbname,
                            user=utils.user,
                            password=utils.password,
                            host=utils.host)
    cur = conn.cursor()

    start_time = time.clock()

    for layer in layers:
        # CREATE THE TABLE
        table_name = create_table_name(compression, layer)
        insert_command = "INSERT INTO " + table_name + " (file, class,"
        values_sql = "VALUES(%s,%s,"

        dimensions = utils.get_dimension_options(layer, compression)
        if len(dimensions) == 0:
            print 'POSSIBLE ERROR: No dimensions loaded for ', layer, ' with ', compression
            continue

        for dim in dimensions:
            insert_command += create_feature_name(dim) + ","
            values_sql += "%s,"

        values_sql = values_sql[:-1] + ");"
        insert_command = insert_command[:-1] + ") " + values_sql

        print insert_command

        # INSERT DATA INTO TABLE

        # load the data
        X, ids = utils.load_instance_features(layer)
        scalar = utils.load_scalar(layer)

        X = scalar.transform(X)

        transforms = []
        # apply the compression algorithm
        for dim in dimensions:
            compressor = utils.load_compressor(layer, dim, compression)
            transforms.append(compressor.transform(X))

        value = []
        for i in range(X.shape[0]):
            file_name = ids[i]
            value = [file_name, -1]
            for X_prime in transforms:
                value.append(X_prime[i, :].tolist())

            cur.execute(insert_command, value)

        conn.commit()

    cur.close()
    conn.close()

    print 'Total Time : ', time.clock() - start_time
Ejemplo n.º 2
0
def store_instances(layers, compression):
    conn = psycopg2.connect(dbname=utils.dbname, user=utils.user, password=utils.password, host=utils.host)
    cur = conn.cursor()

    start_time = time.clock()

    for layer in layers:
        # CREATE THE TABLE
        table_name = create_table_name(compression, layer)
        insert_command = "INSERT INTO " + table_name + " (file, class,"
        values_sql = "VALUES(%s,%s,"

        dimensions = utils.get_dimension_options(layer, compression)
        if len(dimensions) == 0:
            print 'POSSIBLE ERROR: No dimensions loaded for ', layer, ' with ', compression
            continue

        for dim in dimensions:
            insert_command += create_feature_name(dim) + ","
            values_sql += "%s,"

        values_sql = values_sql[:-1] + ");"
        insert_command = insert_command[:-1] + ") " + values_sql

        print insert_command

        # INSERT DATA INTO TABLE

        # load the data
        X, ids = utils.load_instance_features(layer)
        scalar = utils.load_scalar(layer)

        X = scalar.transform(X)

        transforms = []
        # apply the compression algorithm
        for dim in dimensions:
            compressor = utils.load_compressor(layer, dim, compression)
            transforms.append(compressor.transform(X))

        value = []
        for i in range(X.shape[0]):
            file_name = ids[i]
            value = [file_name, -1]
            for X_prime in transforms:
                value.append(X_prime[i, :].tolist())

            cur.execute(insert_command, value)

        conn.commit()

    cur.close()
    conn.close()

    print 'Total Time : ', time.clock() - start_time
Ejemplo n.º 3
0
import sql
import utils
import os
import numpy as np
import caffe


image_file = 'ubot5_1.JPG'
layer = 'pool5'
dimension = 256
compression = 'pca'
k = 10

compressor = utils.load_compressor(layer=layer,
                                   dimension=dimension,
                                   compression=compression)

scalar = utils.load_scalar(layer=layer)

net, params, blobs = utils.load_network()

input_image = caffe.io.load_image(os.path.join(utils.instances_dir, image_file))

# predict takes any number of images, and formats them for the Caffe net automatically
prediction = net.predict([input_image], oversample=False)
feat = net.blobs[layer].data[0].ravel()
feat = scalar.transform(feat)

comp_feat = compressor.transform(feat).ravel()

results = sql.query_top_k(k=k,
Ejemplo n.º 4
0
        labels = []
        print len(ids)
        for i in range(len(ids)):
            labels.append(int(ids[i].split('_')[0].split('n')[1]))

        labels = matlab.double(labels)

        #======== Start MATLAB  ============
        print 'start matlab'
        eng = matlab.engine.start_matlab()

        for n_com in n_components:

            scalar = utils.load_scalar(layer)
            compressor = utils.load_compressor(layer=layer,
                                               dimension=n_com,
                                               compression=c_type)
            X = scalar.transform(X0)
            comp_X = compressor.transform(X)
            #comp_X = comp_X[0:500,:]

            #===== Convert ndarray to list so that we can pass the variable to matalb function =========
            comp_X = comp_X.tolist()
            comp_X = matlab.double(comp_X)

            print '===============================start tsne in python ==================================='
            print layer, n_com, c_type

            result = eng.tsne_traning_python(comp_X, labels, dimensions, layer,
                                             n_com, c_type)
Ejemplo n.º 5
0
# load the test set
test_files = utils.load_test_set()
test_files = test_files[:N]
net, params, blobs = utils.load_network()

# validation labels are the test set labels
test_labels = utils.load_test_class_labels()
labels = utils.load_english_labels()

dist_mat = utils.load_distance_matrix(distance_matrix_layer)

# start matlab engine
eng = matlab.engine.start_matlab()

query_compressor = utils.load_compressor(layer='fc7',
                                               dimension=256,
                                               compression='pca')


# initialize results data object
results = {}
for c_type in compression_types:
    results[c_type] = {}
    for layer in feature_layers:
        results[c_type][layer] = {}
        for n_components in pca_dimensions:
            results[c_type][layer][n_components] = {'similarity_dist': [], 'avg_time': []}

for c_type in compression_types:
    for layer in feature_layers:
        scalar = utils.load_scalar(layer=layer)
Ejemplo n.º 6
0
def store_feature(layers, compression):
    conn = psycopg2.connect(dbname=utils.dbname, user=utils.user, password=utils.password, host=utils.host)
    cur = conn.cursor()

    start_time = time.clock()

    train_labels = utils.load_train_class_labels()
    for layer in layers:
        # CREATE THE TABLE
        table_name = create_table_name(compression, layer)
        cur.execute("DROP TABLE IF EXISTS " + table_name + ";")
        table_command = "CREATE TABLE " + table_name + " (id serial PRIMARY KEY, file text, class integer, "
        insert_command = "INSERT INTO " + table_name + " (file, class,"
        values_sql = "VALUES(%s,%s,"

        dimensions = utils.get_dimension_options(layer, compression)
        if len(dimensions) == 0:
            print 'POSSIBLE ERROR: No dimensions loaded for ', layer, ' with ', compression
            continue

        for dim in dimensions:
            table_command += create_feature_column(dim)
            insert_command += create_feature_name(dim) + ","
            values_sql += "%s,"

        table_command = table_command[:-1] + ");"
        values_sql = values_sql[:-1] + ");"
        insert_command = insert_command[:-1] + ") " + values_sql

        print table_command
        print insert_command

        cur.execute(table_command)

        # INSERT DATA INTO TABLE

        # load the data
        X, imagenet_ids = utils.load_feature_layer(layer)
        scalar = utils.load_scalar(layer)

        X = scalar.transform(X)

        transforms = []
        # apply the compression algorithm
        for dim in dimensions:
            compressor = utils.load_compressor(layer, dim, compression)
            transforms.append(compressor.transform(X))

        value = []
        for i in range(X.shape[0]):
            file_name = imagenet_ids[i]
            value = [file_name, train_labels[file_name]]
            for X_prime in transforms:
                value.append(X_prime[i, :].tolist())

            cur.execute(insert_command, value)

        conn.commit()

    cur.close()
    conn.close()

    print 'Done Creating Tables'
    print 'Total Time : ', time.clock() - start_time
Ejemplo n.º 7
0
import sql
import utils
import os
import numpy as np
import caffe

image_file = 'ubot5_1.JPG'
layer = 'pool5'
dimension = 256
compression = 'pca'
k = 10

compressor = utils.load_compressor(layer=layer,
                                   dimension=dimension,
                                   compression=compression)

scalar = utils.load_scalar(layer=layer)

net, params, blobs = utils.load_network()

input_image = caffe.io.load_image(os.path.join(utils.instances_dir,
                                               image_file))

# predict takes any number of images, and formats them for the Caffe net automatically
prediction = net.predict([input_image], oversample=False)
feat = net.blobs[layer].data[0].ravel()
feat = scalar.transform(feat)

comp_feat = compressor.transform(feat).ravel()

results = sql.query_top_k(k=k,
Ejemplo n.º 8
0
def store_tsne_feature(layers, compression, tsne_dim):
    conn = psycopg2.connect(dbname=utils.dbname,
                            user=utils.user,
                            password=utils.password,
                            host=utils.host)
    cur = conn.cursor()

    start_time = time.clock()
    eng = matlab.engine.start_matlab()

    train_labels = utils.load_train_class_labels()
    for layer in layers:
        # CREATE THE TABLE
        table_name = create_table_name(compression, layer)
        cur.execute("DROP TABLE IF EXISTS " + table_name + ";")
        table_command = "CREATE TABLE " + table_name + " (id serial PRIMARY KEY, file text, class integer, "
        insert_command = "INSERT INTO " + table_name + " (file, class,"
        values_sql = "VALUES(%s,%s,"

        if compression == 'tsne':
            dimensions = [64]  #[64, 128, 256]
        else:
            dimensions = utils.get_dimension_options(layer, compression)
        if len(dimensions) == 0:
            print 'POSSIBLE ERROR: No dimensions loaded for ', layer, ' with ', compression
            continue

        for dim in dimensions:
            table_command += create_feature_column(dim)
            insert_command += create_feature_name(dim) + ","
            values_sql += "%s,"

        table_command = table_command[:-1] + ");"
        values_sql = values_sql[:-1] + ");"
        insert_command = insert_command[:-1] + ") " + values_sql

        #print table_command
        #print insert_command

        cur.execute(table_command)

        # INSERT DATA INTO TABLE

        # load the data
        X, imagenet_ids = utils.load_feature_layer(layer)
        scalar = utils.load_scalar(layer)

        X = scalar.transform(X)

        X = X[keep_idxs]
        imagenet_ids = np.asarray(imagenet_ids, dtype=np.object)
        imagenet_ids = imagenet_ids[keep_idxs]

        transforms = []
        # apply the compression algorithm
        for dim in dimensions:
            if compression == 'tsne':
                print 'tsne'
                compressor = utils.load_compressor(layer, dim, 'pca')
                #utils.plot_tsne_features('fc7',64)

                comp_X = compressor.transform(X)
                comp_X = comp_X.tolist()

                comp_X = matlab.double(comp_X)
                comp_X = eng.tsne_testing_python(comp_X, tsne_dim, layer, dim,
                                                 'pca')
                comp_X = np.array(comp_X)
                print comp_X
                transforms.append(comp_X)
            else:
                compressor = utils.load_compressor(layer, dim, compression)
                transforms.append(compressor.transform(X))

        value = []
        for i in range(X.shape[0]):
            file_name = imagenet_ids[i]
            value = [file_name, train_labels[file_name]]
            for X_prime in transforms:
                value.append(X_prime[i, :].tolist())

            cur.execute(insert_command, value)

        conn.commit()

    cur.close()
    conn.close()
    eng.exit()
    print 'Done Creating Tables'
    print 'Total Time : ', time.clock() - start_time
Ejemplo n.º 9
0
# load the test set
test_files = utils.load_test_set()
test_files = test_files[:N]
net, params, blobs = utils.load_network()

# validation labels are the test set labels
test_labels = utils.load_test_class_labels()
labels = utils.load_english_labels()

dist_mat = utils.load_distance_matrix(distance_matrix_layer)

# start matlab engine
eng = matlab.engine.start_matlab()

query_compressor = utils.load_compressor(layer='fc7',
                                         dimension=256,
                                         compression='pca')

# initialize results data object
results = {}
for c_type in compression_types:
    results[c_type] = {}
    for layer in feature_layers:
        results[c_type][layer] = {}
        for n_components in pca_dimensions:
            results[c_type][layer][n_components] = {
                'similarity_dist': [],
                'avg_time': []
            }

for c_type in compression_types:
Ejemplo n.º 10
0
    for layer in feature_layers:
        results[c_type][layer] = {}
        for n_components in dimensions:
            results[c_type][layer][n_components] = {'similarity_dist': [], 'avg_time': []}

for c_type in compression_types:
    for layer in feature_layers:

        scalar = utils.load_scalar(layer=layer)

        for n_components in dimensions:
            succs = 0  # how many times we retrieved at least 1 image of the true class
            hits = 0  # how many images of the true class we retrieved in total

            compressor = utils.load_compressor(layer=layer,
                                               dimension=n_components,
                                               compression=c_type)

            count = 0
            for t_files in utils.batch_gen(test_files, batch_size=batch_size):


                images = []
                for t_file in t_files:
                    image_path = os.path.join(utils.test_dir, t_file)
                    images.append(caffe.io.load_image(image_path))

                # predict takes any number of images, and formats them for the Caffe net automatically
                prediction = net.predict(images, oversample=False)

                for i in range(batch_size):
Ejemplo n.º 11
0
def store_feature(layers, compression):
    conn = psycopg2.connect(dbname=utils.dbname,
                            user=utils.user,
                            password=utils.password,
                            host=utils.host)
    cur = conn.cursor()

    start_time = time.clock()

    train_labels = utils.load_train_class_labels()
    for layer in layers:
        # CREATE THE TABLE
        table_name = create_table_name(compression, layer)
        cur.execute("DROP TABLE IF EXISTS " + table_name + ";")
        table_command = "CREATE TABLE " + table_name + " (id serial PRIMARY KEY, file text, class integer, "
        insert_command = "INSERT INTO " + table_name + " (file, class,"
        values_sql = "VALUES(%s,%s,"

        dimensions = utils.get_dimension_options(layer, compression)
        if len(dimensions) == 0:
            print 'POSSIBLE ERROR: No dimensions loaded for ', layer, ' with ', compression
            continue

        for dim in dimensions:
            table_command += create_feature_column(dim)
            insert_command += create_feature_name(dim) + ","
            values_sql += "%s,"

        table_command = table_command[:-1] + ");"
        values_sql = values_sql[:-1] + ");"
        insert_command = insert_command[:-1] + ") " + values_sql

        print table_command
        print insert_command

        cur.execute(table_command)

        # INSERT DATA INTO TABLE

        # load the data
        X, imagenet_ids = utils.load_feature_layer(layer)
        scalar = utils.load_scalar(layer)

        X = scalar.transform(X)

        transforms = []
        # apply the compression algorithm
        for dim in dimensions:
            compressor = utils.load_compressor(layer, dim, compression)
            transforms.append(compressor.transform(X))

        value = []
        for i in range(X.shape[0]):
            file_name = imagenet_ids[i]
            value = [file_name, train_labels[file_name]]
            for X_prime in transforms:
                value.append(X_prime[i, :].tolist())

            cur.execute(insert_command, value)

        conn.commit()

    cur.close()
    conn.close()

    print 'Done Creating Tables'
    print 'Total Time : ', time.clock() - start_time
Ejemplo n.º 12
0
def store_tsne_feature(layers, compression, tsne_dim):
    conn = psycopg2.connect(dbname=utils.dbname, user=utils.user, password=utils.password, host=utils.host)
    cur = conn.cursor()

    start_time = time.clock()
    eng = matlab.engine.start_matlab()

    train_labels = utils.load_train_class_labels()
    for layer in layers:
        # CREATE THE TABLE
        table_name = create_table_name(compression, layer)
        cur.execute("DROP TABLE IF EXISTS " + table_name + ";")
        table_command = "CREATE TABLE " + table_name + " (id serial PRIMARY KEY, file text, class integer, "
        insert_command = "INSERT INTO " + table_name + " (file, class,"
        values_sql = "VALUES(%s,%s,"

        if compression == 'tsne':
            dimensions = [64] #[64, 128, 256]
        else:
            dimensions = utils.get_dimension_options(layer, compression)
        if len(dimensions) == 0:
            print 'POSSIBLE ERROR: No dimensions loaded for ', layer, ' with ', compression
            continue

        for dim in dimensions:
            table_command += create_feature_column(dim)
            insert_command += create_feature_name(dim) + ","
            values_sql += "%s,"

        table_command = table_command[:-1] + ");"
        values_sql = values_sql[:-1] + ");"
        insert_command = insert_command[:-1] + ") " + values_sql

        #print table_command
        #print insert_command

        cur.execute(table_command)

        # INSERT DATA INTO TABLE

        # load the data
        X, imagenet_ids = utils.load_feature_layer(layer)
        scalar = utils.load_scalar(layer)

        X = scalar.transform(X)

        X = X[keep_idxs]
        imagenet_ids = np.asarray(imagenet_ids, dtype=np.object)
        imagenet_ids = imagenet_ids[keep_idxs]



        transforms = []
        # apply the compression algorithm
        for dim in dimensions:
            if compression == 'tsne':
                print 'tsne'
                compressor = utils.load_compressor(layer, dim, 'pca')
                #utils.plot_tsne_features('fc7',64)

                comp_X = compressor.transform(X)
                comp_X = comp_X.tolist()

                comp_X = matlab.double(comp_X)
                comp_X = eng.tsne_testing_python(comp_X, tsne_dim, layer, dim, 'pca')
                comp_X = np.array(comp_X)
                print comp_X
                transforms.append(comp_X)
            else:
                compressor = utils.load_compressor(layer, dim, compression)
                transforms.append(compressor.transform(X))

        value = []
        for i in range(X.shape[0]):
            file_name = imagenet_ids[i]
            value = [file_name, train_labels[file_name]]
            for X_prime in transforms:
                value.append(X_prime[i, :].tolist())

            cur.execute(insert_command, value)

        conn.commit()

    cur.close()
    conn.close()
    eng.exit()
    print 'Done Creating Tables'
    print 'Total Time : ', time.clock() - start_time