Ejemplo n.º 1
0
def add_training_data(current_label_dict):
    cur_dir = os.getcwd()
    res_dir = os.path.abspath(os.path.join(cur_dir, '..', 'res'))
    all_models_dir = os.path.abspath(os.path.join(cur_dir, '..', 'models'))
    model_dir = utils.check_or_create_local_path('pro_classifier',
                                                 all_models_dir)
    classifications_dir = utils.check_or_create_local_path(
        'classifications', model_dir)
    pro_dir = utils.check_or_create_local_path('pro', classifications_dir)
    notpro_dir = utils.check_or_create_local_path('notpro',
                                                  classifications_dir)

    notpro_worlds = os.listdir(notpro_dir)
    pro_worlds = os.listdir(pro_dir)

    orig_dict = utils.load_label_dict(res_dir, current_label_dict)
    new_dict = utils.load_label_dict(res_dir, current_label_dict)

    for notpro_world in notpro_worlds:
        notpro_id = utils.get_world_id(notpro_world)
        if notpro_id not in orig_dict:
            new_dict[notpro_id] = 0

    for pro_world in pro_worlds:
        pro_id = utils.get_world_id(pro_world)
        new_dict[pro_id] = 1

    utils.save_label_dict(classifications_dir, 'test', new_dict)
Ejemplo n.º 2
0
def predict(network_ver, dict_src_name):
    cur_dir = os.getcwd()
    res_dir = os.path.abspath(os.path.join(cur_dir, '..', 'res'))
    all_models_dir = os.path.abspath(os.path.join(cur_dir, '..', 'models'))
    model_dir = utils.check_or_create_local_path('pro_classifier',
                                                 all_models_dir)
    version_dir = utils.check_or_create_local_path(network_ver, model_dir)
    model_save_dir = utils.check_or_create_local_path('models', version_dir)

    classifications_dir = utils.check_or_create_local_path(
        'classifications', model_dir)
    utils.delete_files_in_path(classifications_dir)

    pro_dir = utils.check_or_create_local_path('pro', classifications_dir)
    notpro_dir = utils.check_or_create_local_path('notpro',
                                                  classifications_dir)

    print('Loading model...')
    classifier = load_model(f'{model_save_dir}\\latest.h5')

    print('Loading block images...')
    block_images = utils.load_block_images(res_dir)

    print('Loading encoding dictionaries...')
    block_forward, block_backward = utils.load_encoding_dict(
        res_dir, 'blocks_optimized')

    x_data, x_files = load_worlds_with_files(5000, f'{res_dir}\\worlds\\',
                                             (112, 112), block_forward)

    x_labeled = utils.load_label_dict(res_dir, dict_src_name)

    batch_size = 50
    batches = x_data.shape[0] // batch_size

    for batch_index in range(batches):
        x_batch = x_data[batch_index * batch_size:(batch_index + 1) *
                         batch_size]
        y_batch = classifier.predict(x_batch)

        for world in range(batch_size):
            g_index = (batch_index * batch_size) + world
            world_file = x_files[g_index]
            world_id = utils.get_world_id(world_file)

            # Ignore worlds we've already labeled
            if world_id in x_labeled:
                continue

            prediction = y_batch[world]

            world_data = utils.load_world_data_ver3(
                f'{res_dir}\\worlds\\{world_id}.world')

            if prediction[0] < 0.5:
                utils.save_world_preview(block_images, world_data,
                                         f'{notpro_dir}\\{world_id}.png')
            else:
                utils.save_world_preview(block_images, world_data,
                                         f'{pro_dir}\\{world_id}.png')
Ejemplo n.º 3
0
def apply_train():
    label_dict = load_label_dict(caption_fn)
    best_fscore = -1
    for epoch in range(args.epoch):
        train(epoch, train_dir_fn, label_dict, fvec_dir)
        fscore = test(epoch, dev_dir_fn, label_dict, fvec_dir)
        if fscore > best_fscore:
            torch.save(mlp, args.model)
            best_fscore = fscore
    return 0
Ejemplo n.º 4
0
def save_current_labels(current_label_dict):
    cur_dir = os.getcwd()
    res_dir = os.path.abspath(os.path.join(cur_dir, '..', 'res'))
    all_models_dir = os.path.abspath(os.path.join(cur_dir, '..', 'models'))
    model_dir = utils.check_or_create_local_path('pro_classifier',
                                                 all_models_dir)
    notpro_dir = utils.check_or_create_local_path('notpro', model_dir)
    pro_dir = utils.check_or_create_local_path('pro', model_dir)

    print('Loading block images...')
    block_images = utils.load_block_images(res_dir)

    print('Loading label dict...')
    x_labeled = utils.load_label_dict(res_dir, current_label_dict)

    saved = 0
    for x_world in x_labeled:
        label = x_labeled[x_world]

        if os.path.exists(f'{pro_dir}\\{x_world}.png') or os.path.exists(
                f'{notpro_dir}\\{x_world}.png'):
            saved += 1
            continue

        world_file = f'{res_dir}\\worlds\\{x_world}.world'
        world_data = utils.load_world_data_ver3(world_file)

        if label == 1:
            utils.save_world_preview(block_images, world_data,
                                     f'{pro_dir}\\{x_world}.png')
        else:
            utils.save_world_preview(block_images, world_data,
                                     f'{notpro_dir}\\{x_world}.png')

        saved += 1
        print(f'Saved {saved} of {len(x_labeled)} world previews')
Ejemplo n.º 5
0
        best_model = model

for ep, lr in sorted(results):
    valid_acc = results[(ep, lr)]
    print('# epochs : %d lr : %e valid accuracy : %f' % (ep, lr, valid_acc))

print('best validation accuracy achieved: %f' % best_acc)

# Evaluate best model on test data
test_x, test_y = test_data
pred, prob = best_model.eval(test_x)

test_acc = accuracy(pred, test_y)
print('test accuracy of best model : %f' % test_acc)

# Plot prediction of the best model
if show_plot and DATA_NAME == 'Fashion_mnist':
    num_test = len(test_x)
    test_x = test_x[:, 1:]
    test_x = test_x.reshape(num_test, 28, 28)

    random_idx = np.random.choice(num_test, 5)
    sample_data = test_x[random_idx]
    sample_label = test_y[random_idx]
    sample_prob = prob[random_idx]

    label_dict = load_label_dict(DATA_NAME)

    display_image_predictions(sample_data, sample_label, sample_prob,
                              label_dict)
Ejemplo n.º 6
0
        default=256,
        help="BEST results: same value as when training the Model")

    args = parser.parse_args()

    EVALUATE_PREDICATES = utils.get_bool_value(args.eval_preds)
    device, USE_CUDA = utils.get_torch_device()
    file_has_gold = utils.get_bool_value(args.gold_labels)
    SEQ_MAX_LEN = int(args.seq_max_len)
    BATCH_SIZE = int(args.batch_size)

    # Load Saved Model
    model, tokenizer = utils.load_model(
        BertForTokenClassification, BertTokenizer,
        f"{args.model_dir}/EPOCH_{args.epoch}")
    label2index = utils.load_label_dict(f"{args.model_dir}/label2index.json")
    index2label = {v: k.strip("B-") for k, v in label2index.items()}

    # Load File for Predictions
    _, prediction_inputs, prediction_masks, gold_labels, seq_lens, gold_predicates = utils.load_srl_dataset(
        args.test_path,
        tokenizer,
        include_labels=True,
        max_len=SEQ_MAX_LEN,
        label2index=label2index)

    # Create the DataLoader.
    prediction_data = TensorDataset(prediction_inputs, prediction_masks,
                                    gold_labels, seq_lens, gold_predicates)
    prediction_sampler = SequentialSampler(prediction_data)
    prediction_dataloader = DataLoader(prediction_data,
Ejemplo n.º 7
0
def train(epochs,
          batch_size,
          world_count,
          dict_src_name,
          version_name=None,
          initial_epoch=0):
    cur_dir = os.getcwd()
    res_dir = os.path.abspath(os.path.join(cur_dir, '..', 'res'))
    all_models_dir = os.path.abspath(os.path.join(cur_dir, '..', 'models'))
    model_dir = utils.check_or_create_local_path('pro_classifier',
                                                 all_models_dir)

    utils.delete_empty_versions(model_dir, 1)
    no_version = version_name is None
    if no_version:
        latest = utils.get_latest_version(model_dir)
        version_name = f'ver{latest + 1}'

    version_dir = utils.check_or_create_local_path(version_name, model_dir)
    graph_dir = utils.check_or_create_local_path('graph', model_dir)
    graph_version_dir = utils.check_or_create_local_path(
        version_name, graph_dir)

    model_save_dir = utils.check_or_create_local_path('models', version_dir)

    print('Saving source...')
    utils.save_source_to_dir(version_dir)

    print('Loading encoding dictionaries...')
    block_forward, block_backward = utils.load_encoding_dict(
        res_dir, 'blocks_optimized')

    print('Building model from scratch...')
    c_optim = Adam(lr=0.0001)

    size = 64
    c = build_classifier(size)
    # c = build_resnet50(1)
    # c = build_wide_resnet(input_dim=(size, size, 10), nb_classes=1, N=2, k=1, dropout=0.1)

    c.summary()
    c.compile(loss='binary_crossentropy',
              optimizer=c_optim,
              metrics=['accuracy'])

    print('Loading labels...')
    label_dict = utils.load_label_dict(res_dir, dict_src_name)

    print('Loading worlds...')
    x, y_raw = load_worlds_with_labels(world_count, f'{res_dir}\\worlds\\',
                                       label_dict, (size, size), block_forward)

    y = utils.convert_labels_binary(y_raw, epsilon=0)

    # Create callback for automatically saving best model based on highest regular accuracy
    check_best_acc = keras.callbacks.ModelCheckpoint(
        f'{model_save_dir}\\best_acc.h5',
        monitor='acc',
        verbose=0,
        save_best_only=True,
        save_weights_only=False,
        mode='max',
        period=1)

    # Create callback for automatically saving latest model so training can be resumed. Saves every epoch
    latest_h5_callback = keras.callbacks.ModelCheckpoint(
        f'{model_save_dir}\\latest.h5',
        verbose=0,
        save_best_only=False,
        save_weights_only=False,
        mode='auto',
        period=1)

    # Create callback for automatically saving latest weights so training can be resumed. Saves every epoch
    latest_weights_callback = keras.callbacks.ModelCheckpoint(
        f'{model_save_dir}\\latest.weights',
        verbose=0,
        save_best_only=False,
        save_weights_only=True,
        mode='auto',
        period=1)

    # Create callback for tensorboard
    tb_callback = keras.callbacks.TensorBoard(log_dir=graph_version_dir,
                                              batch_size=batch_size,
                                              write_graph=False,
                                              write_grads=True)

    callback_list = [
        check_best_acc, latest_h5_callback, latest_weights_callback,
        tb_callback
    ]

    # Train model
    c.fit(x,
          y,
          batch_size,
          epochs,
          initial_epoch=initial_epoch,
          callbacks=callback_list,
          validation_split=0.2)
Ejemplo n.º 8
0
def predict_sample_matlab(network_ver, dict_src_name, cols, rows):
    cur_dir = os.getcwd()
    res_dir = os.path.abspath(os.path.join(cur_dir, '..', 'res'))
    all_models_dir = os.path.abspath(os.path.join(cur_dir, '..', 'models'))
    model_dir = utils.check_or_create_local_path('pro_classifier',
                                                 all_models_dir)
    version_dir = utils.check_or_create_local_path(network_ver, model_dir)
    model_save_dir = utils.check_or_create_local_path('models', version_dir)

    plots_dir = utils.check_or_create_local_path('plots', model_dir)
    utils.delete_files_in_path(plots_dir)

    print('Loading model...')
    classifier = load_model(f'{model_save_dir}\\latest.h5')

    print('Loading block images...')
    block_images = utils.load_block_images(res_dir)

    print('Loading encoding dictionaries...')
    block_forward, block_backward = utils.load_encoding_dict(
        res_dir, 'blocks_optimized')

    x_labeled = utils.load_label_dict(res_dir, dict_src_name)
    x_worlds = os.listdir(f'{res_dir}\\worlds\\')
    np.random.shuffle(x_worlds)

    world_size = classifier.input_shape[1]
    dpi = 96
    hpixels = 320 * cols
    hfigsize = hpixels / dpi
    vpixels = 330 * rows
    vfigsize = vpixels / dpi
    fig = plt.figure(figsize=(hfigsize, vfigsize), dpi=dpi)

    sample_num = 0
    pro_score_floor = 0
    pro_score_ceiling = 1.0 / (rows * cols)
    for world_filename in x_worlds:
        world_file = os.path.join(f'{res_dir}\\worlds\\', world_filename)
        world_id = utils.get_world_id(world_filename)
        if world_id not in x_labeled:

            # Load world and save preview
            encoded_regions = load_world(world_file, (world_size, world_size),
                                         block_forward)
            if len(encoded_regions) == 0:
                continue

            # Create prediction
            batch_input = np.empty((1, world_size, world_size, 10),
                                   dtype=np.int8)
            batch_input[0] = encoded_regions[0]
            batch_score = classifier.predict(batch_input)
            pro_score = batch_score[0][0]

            if pro_score < pro_score_floor or pro_score > pro_score_ceiling:
                continue

            decoded_region = utils.decode_world_sigmoid(
                block_backward, encoded_regions[0])
            utils.save_world_preview(block_images, decoded_region,
                                     f'{plots_dir}\\preview{sample_num}.png')

            pro_score_floor += 1.0 / (rows * cols)
            pro_score_ceiling += 1.0 / (rows * cols)

            # Create plot
            img = mpimg.imread(f'{plots_dir}\\preview{sample_num}.png')

            subplt = fig.add_subplot(rows, cols, sample_num + 1)
            subplt.set_title(world_id)
            subplt.set_xlabel('P = %.2f%%' % (pro_score * 100))

            no_labels = 2  # how many labels to see on axis x
            step = (16 * world_size) / (no_labels - 1
                                        )  # step between consecutive labels
            positions = np.arange(0, (16 * world_size) + 1,
                                  step)  # pixel count at label position
            labels = positions // 16
            plt.xticks(positions, labels)
            plt.yticks(positions, labels)
            plt.imshow(img)

            print(f'Adding plot {sample_num + 1} of {rows * cols}')

            sample_num += 1
            if sample_num >= rows * cols:
                break

    print('Saving figure...')
    fig.tight_layout()
    fig.savefig(f'{plots_dir}\\plot.png', transparent=True)
Ejemplo n.º 9
0
def train(epochs,
          batch_size,
          world_count,
          latent_dim,
          version_name=None,
          initial_epoch=0):
    cur_dir = os.getcwd()
    res_dir = os.path.abspath(os.path.join(cur_dir, '..', 'res'))
    all_models_dir = os.path.abspath(os.path.join(cur_dir, '..', 'models'))
    model_dir = utils.check_or_create_local_path('gan', all_models_dir)

    utils.delete_empty_versions(model_dir, 1)
    no_version = version_name is None
    if no_version:
        latest = utils.get_latest_version(model_dir)
        version_name = f'ver{latest + 1}'

    version_dir = utils.check_or_create_local_path(version_name, model_dir)
    graph_dir = utils.check_or_create_local_path('graph', model_dir)
    graph_version_dir = utils.check_or_create_local_path(
        version_name, graph_dir)

    worlds_dir = utils.check_or_create_local_path('worlds', version_dir)
    previews_dir = utils.check_or_create_local_path('previews', version_dir)
    model_save_dir = utils.check_or_create_local_path('models', version_dir)

    print('Saving source...')
    utils.save_source_to_dir(version_dir)

    print('Loading block images...')
    block_images = utils.load_block_images(res_dir)

    print('Loading encoding dictionaries...')
    block_forward, block_backward = utils.load_encoding_dict(
        res_dir, 'blocks_optimized')

    # Load model and existing weights
    print('Loading model...')

    # Try to load full model, otherwise try to load weights
    size = 64
    cur_models = f'{model_save_dir}\\epoch{initial_epoch - 1}'
    if os.path.exists(f'{cur_models}\\discriminator.h5') and os.path.exists(
            f'{cur_models}\\generator.h5'):
        print('Building model from files...')
        d = load_model(f'{cur_models}\\discriminator.h5')
        g = load_model(f'{cur_models}\\generator.h5')

        if os.path.exists(f'{cur_models}\\d_g.h5'):
            d_on_g = load_model(f'{cur_models}\\d_g.h5')
        else:
            g_optim = Adam(lr=0.0001, beta_1=0.5)
            d_on_g = generator_containing_discriminator(g, d)
            d_on_g.compile(loss='binary_crossentropy', optimizer=g_optim)
    elif os.path.exists(
            f'{cur_models}\\discriminator.weights') and os.path.exists(
                f'{cur_models}\\generator.weights'):
        print('Building model with weights...')
        d_optim = Adam(lr=0.00001)
        d = build_discriminator(size)
        d.load_weights(f'{cur_models}\\discriminator.weights')
        d.compile(loss='binary_crossentropy',
                  optimizer=d_optim,
                  metrics=['accuracy'])

        g = build_generator(size)
        g.load_weights(f'{cur_models}\\generator.weights')

        g_optim = Adam(lr=0.0001, beta_1=0.5)
        d_on_g = generator_containing_discriminator(g, d)
        d_on_g.compile(loss='binary_crossentropy', optimizer=g_optim)
    else:
        print('Building model from scratch...')
        d_optim = Adam(lr=0.00001)
        g_optim = Adam(lr=0.0001, beta_1=0.5)

        d = build_discriminator(size)
        d.compile(loss='binary_crossentropy',
                  optimizer=d_optim,
                  metrics=['accuracy'])
        d.summary()

        g = build_generator(size, latent_dim)
        g.summary()

        d_on_g = generator_containing_discriminator(g, d)
        d_on_g.compile(loss='binary_crossentropy', optimizer=g_optim)

    if no_version:
        # Delete existing worlds and previews if any
        print('Checking for old generated data...')
        utils.delete_files_in_path(worlds_dir)
        utils.delete_files_in_path(previews_dir)

        print('Saving model images...')
        keras.utils.plot_model(d,
                               to_file=f'{version_dir}\\discriminator.png',
                               show_shapes=True,
                               show_layer_names=True)
        keras.utils.plot_model(g,
                               to_file=f'{version_dir}\\generator.png',
                               show_shapes=True,
                               show_layer_names=True)

    # Load Data
    print('Loading worlds...')
    label_dict = utils.load_label_dict(res_dir, 'pro_labels_b')
    x_train = load_worlds_with_label(world_count,
                                     f'{res_dir}\\worlds\\',
                                     label_dict,
                                     1, (size, size),
                                     block_forward,
                                     overlap_x=0.1,
                                     overlap_y=0.1)

    world_count = x_train.shape[0]
    batch_cnt = (world_count - (world_count % batch_size)) // batch_size

    # Set up tensorboard
    print('Setting up tensorboard...')
    tb_manager = TensorboardManager(graph_version_dir, batch_cnt)

    preview_frequency_sec = 5 * 60.0
    for epoch in range(initial_epoch, epochs):

        # Create directories for current epoch
        cur_worlds_dir = utils.check_or_create_local_path(
            f'epoch{epoch}', worlds_dir)
        cur_previews_dir = utils.check_or_create_local_path(
            f'epoch{epoch}', previews_dir)
        cur_models_dir = utils.check_or_create_local_path(
            f'epoch{epoch}', model_save_dir)

        print('Shuffling data...')
        np.random.shuffle(x_train)

        last_save_time = time.time()
        for batch in range(batch_cnt):

            # Get real set of images
            real_worlds = x_train[batch * batch_size:(batch + 1) * batch_size]

            # Get fake set of images
            noise = np.random.normal(0, 1, size=(batch_size, latent_dim))
            fake_worlds = g.predict(noise)

            real_labels = np.ones(
                (batch_size,
                 1))  # np.random.uniform(0.9, 1.1, size=(batch_size,))
            fake_labels = np.zeros(
                (batch_size,
                 1))  # np.random.uniform(-0.1, 0.1, size=(batch_size,))

            # Train discriminator on real worlds
            d.trainable = True
            d_loss = d.train_on_batch(real_worlds, real_labels)
            acc_real = d_loss[1]
            loss_real = d_loss[0]
            tb_manager.log_var('d_acc_real', epoch, batch, d_loss[1])
            tb_manager.log_var('d_loss_real', epoch, batch, d_loss[0])

            # Train discriminator on fake worlds
            d_loss = d.train_on_batch(fake_worlds, fake_labels)
            d.trainable = False
            acc_fake = d_loss[1]
            loss_fake = d_loss[0]
            tb_manager.log_var('d_acc_fake', epoch, batch, d_loss[1])
            tb_manager.log_var('d_loss_fake', epoch, batch, d_loss[0])

            # Training generator on X data, with Y labels
            # noise = np.random.normal(0, 1, (batch_size, 256))

            # Train generator to generate real
            g_loss = d_on_g.train_on_batch(noise, real_labels)
            tb_manager.log_var('g_loss', epoch, batch, g_loss)

            print(
                f'epoch [{epoch}/{epochs}] :: batch [{batch}/{batch_cnt}] :: fake_acc = {acc_fake} :: '
                f'real_acc = {acc_real} :: fake_loss = {loss_fake} :: real_loss = {loss_real} :: gen_loss = {g_loss}'
            )

            # Save models
            time_since_save = time.time() - last_save_time
            if time_since_save >= preview_frequency_sec or batch == batch_cnt - 1:
                print('Saving previews...')
                for i in range(batch_size):
                    generated_world = fake_worlds[i]
                    decoded_world = utils.decode_world_sigmoid(
                        block_backward, generated_world)
                    utils.save_world_data(decoded_world,
                                          f'{cur_worlds_dir}\\world{i}.world')
                    utils.save_world_preview(
                        block_images, decoded_world,
                        f'{cur_previews_dir}\\preview{i}.png')

                print('Saving models...')
                try:
                    d.save(f'{cur_models_dir}\\discriminator.h5')
                    g.save(f'{cur_models_dir}\\generator.h5')
                    d_on_g.save(f'{cur_models_dir}\\d_g.h5')
                    d.save_weights(f'{cur_models_dir}\\discriminator.weights')
                    g.save_weights(f'{cur_models_dir}\\generator.weights')
                    d_on_g.save_weights(f'{cur_models_dir}\\d_g.weights')
                except ImportError:
                    print('Failed to save data.')

                last_save_time = time.time()