Ejemplo n.º 1
0
    def forward(self, data_src, data_tgt=0):
        loss = 0
        data_src_feature = self.sharedNet(data_src)
        # data_src_feature = self.DSFE(data_src_feature)
        if self.training == True:
            data_tgt_feature = self.sharedNet(data_tgt)
            loss += utils.mmd(data_src_feature, data_tgt_feature)

        data_src_cls = self.cls_fc(data_src_feature)
        return data_src_cls, loss, data_src_feature
Ejemplo n.º 2
0
def loss_function(recon_x1, recon_x2, x1, x2, mu1, mu2, logvar1, logvar2,
                  VTlabel, z1, z2):
    x1 = x1.float()
    x2 = x2.float()
    reconLoss = (recon_loss(recon_x1, x1) + recon_loss(recon_x2, x2)) / mb_size
    KLLoss = torch.mean(0.5 * torch.sum(
        torch.exp(logvar1) + mu1**2 - 1. - logvar1, 1)) + torch.mean(
            0.5 * torch.sum(torch.exp(logvar2) + mu2**2 - 1. - logvar2, 1))

    #mmd
    x1x1, x1x2, x2x2 = mmd(z1, z2, 1.0)
    labels = (VTlabel - 1) / (-2)
    mmdLoss = (torch.mean(x1x1 * labels) - 2 * torch.mean(x1x2 * labels) +
               torch.mean(x2x2 * labels))

    return reconLoss, KLLoss, mmdLoss
Ejemplo n.º 3
0
    def loss_actor(self, o):
        o2 = o.repeat(self.expand_batch, 1)
        a2 = self.actor_critic.actor(o2)

        q1 = self.actor_critic.critic1(o2, a2)
        q2 = self.actor_critic.critic2(o2, a2)

        a2 = a2.view(self.expand_batch, -1, a2.shape[-1]).transpose(0, 1)
        with torch.no_grad():
            a3 = (2 * torch.rand_like(a2) - 1)

        mmd_entropy = mmd(a2, a3, kernel=self.kernel)

        # Entropy-regularized policy loss
        loss = -torch.min(q1, q2).mean() + self.alpha * mmd_entropy
        return loss, mmd_entropy.detach()
Ejemplo n.º 4
0
def main(unused_argv):
    # Data generating process parameters
    exp_parameter_grid = {
        'model': ["dlvm", "lrmf"] if FLAGS.model is None else [FLAGS.model],
        'citcio': [
            False,
        ],
        'n': [1000, 5000, 10000]
        if FLAGS.n_observations is None else [FLAGS.n_observations],
        'p': [10, 50] if FLAGS.p_ambient is None else [FLAGS.p_ambient],
        'y_snr': [5.] if FLAGS.y_snr is None else [FLAGS.y_snr],
        'x_snr': [2.] if FLAGS.x_snr is None else [FLAGS.x_snr],
        'mu_z': [0.] if FLAGS.mu_z is None else [FLAGS.mu_z],
        'sig_z': [1.] if FLAGS.sig_z is None else [FLAGS.sig_z],
        'sig_xgivenz':
        [0.001] if FLAGS.sig_xgivenz is None else [FLAGS.sig_xgivenz],
        'prop_miss': [
            0.0,
        ] if FLAGS.prop_miss is None else [FLAGS.prop_miss],
        'regularize':
        [False] if FLAGS.regularize is None else [FLAGS.regularize],
        'seed':
        np.arange(FLAGS.n_seeds),
    }
    range_d_over_p = [
        0.002, 0.01, 0.1
    ] if FLAGS.d_over_p is None and FLAGS.d_latent is None else [
        FLAGS.d_over_p
    ]
    range_d = None if range_d_over_p is not None and FLAGS.d_latent is None else FLAGS.d_latent

    # MDC parameters
    range_d_offset = [0, 5, 10] if FLAGS.miwae_d_offset is None else [
        FLAGS.miwae_d_offset
    ]

    mdc_parameter_grid = {
        'mu_prior':
        [0.] if FLAGS.miwae_mu_prior is None else [FLAGS.miwae_mu_prior],
        'sig_prior':
        [1.] if FLAGS.miwae_sig_prior is None else [FLAGS.miwae_sig_prior],
        'num_samples_zmul': [500] if FLAGS.miwae_n_samples_zmul is None else
        [FLAGS.miwae_n_samples_zmul],
        'learning_rate': [
            0.0001,
        ]
        if FLAGS.miwae_learning_rate is None else [FLAGS.miwae_learning_rate],
        'n_epochs': [
            5000,
        ] if FLAGS.miwae_n_epochs is None else [FLAGS.miwae_n_epochs],
    }

    test_seeds = np.arange(FLAGS.n_test_seeds) + 1000
    save_test_data = True if FLAGS.save_test_data is None else FLAGS.save_test_data

    # Experiment and output file name
    output = f'results/{FLAGS.exp_name}.csv' if FLAGS.output is None else FLAGS.output

    FLAGS.log_dir = './sessions/logging/' if FLAGS.log_path is None else FLAGS.log_path
    logging.get_absl_handler().use_absl_log_file()
    logging.info('*' * 20)
    logging.info(f'Starting exp: {FLAGS.exp_name}')
    logging.info('*' * 20)

    exp_arguments = [
        dict(zip(exp_parameter_grid.keys(), vals))
        for vals in itertools.product(*exp_parameter_grid.values())
    ]

    previous_runs = set()
    if tf.io.gfile.exists(output):
        with tf.io.gfile.GFile(output, mode='r') as f:
            reader = csv.DictReader(f)
            for row in reader:
                # Note: we need to do this conversion because DictReader creates an
                # OrderedDict, and reads all values as str instead of bool or int.
                previous_runs.add(
                    str({
                        'model': row['model'],
                        'citcio': row['citcio'] == 'True',
                        'n': int(row['n']),
                        'p': int(row['p']),
                        'y_snr': float(row['y_snr']),
                        'x_snr': float(row['x_snr']),
                        'mu_z': float(row['mu_z']),
                        'sig_z': float(row['sig_z']),
                        'prop_miss': float(row['prop_miss']),
                        'regularize': row['regularize'] == 'True',
                        'seed': int(row['seed']),
                        'd': int(row['d']),
                        'sig_xgivenz': float(row['sig_xgivenz'])
                    }))
    logging.info('Previous runs')
    logging.info(previous_runs)

    for args in exp_arguments:
        # For given p, if range_d is not yet specified,
        # create range for d such that 1 < d < p
        # starting with given ratios for d/p
        if range_d is None:
            range_d = [
                np.maximum(2, int(np.floor(args['p'] * x)))
                for x in range_d_over_p
            ]
            range_d = np.unique(
                np.array(range_d)[np.array(range_d) < args['p']].tolist())

        exp_time = time.time()
        for args['d'] in range_d:
            # We only consider cases where latent dimension <= ambient dimension
            if args['d'] > args['p']:
                continue
            res = []
            if str(args) in previous_runs:
                logging.info(f'Skipped {args}')
                continue
            else:
                logging.info(f'running exp with {args}')

            if args['model'] == "lrmf":
                Z, X, w, y, ps, mu0, mu1 = gen_lrmf(
                    n=args['n'],
                    d=args['d'],
                    p=args['p'],
                    y_snr=args['y_snr'],
                    x_snr=args['x_snr'],
                    citcio=args['citcio'],
                    prop_miss=args['prop_miss'],
                    seed=args['seed'])
            elif args['model'] == "dlvm":
                Z, X, w, y, ps, mu0, mu1 = gen_dlvm(
                    n=args['n'],
                    d=args['d'],
                    p=args['p'],
                    y_snr=args['y_snr'],
                    citcio=args['citcio'],
                    prop_miss=args['prop_miss'],
                    seed=args['seed'],
                    mu_z=args['mu_z'],
                    sig_z=args['sig_z'],
                    x_snr=args['x_snr'],
                    sig_xgivenz=args['sig_xgivenz'])

            X_miss = ampute(X, prop_miss=args['prop_miss'], seed=args['seed'])

            # MIWAE
            mdc_parameter_grid['d_miwae'] = [
                args['d'] + x for x in range_d_offset
            ]

            mdc_arguments = [
                dict(zip(mdc_parameter_grid.keys(), vals))
                for vals in itertools.product(*mdc_parameter_grid.values())
            ]

            for mdc_arg in mdc_arguments:
                t0 = time.time()
                mdc_arg['mu_prior'] = args['mu_z']
                session_file = './sessions/' + \
                                    args['model'] + '_'+ \
                                    '_sigXgivenZ' + str(args['sig_xgivenz']) + \
                                    '_n' + str(args['n']) + \
                                    '_p' + str(args['p']) + \
                                    '_d' + str(args['d']) + \
                                    '_ysnr' + str(args['y_snr']) +\
                                    '_xsnr' + str(args['x_snr']) +\
                                    '_propNA' + str(args['prop_miss']) + \
                                    '_seed' + str(args['seed'])
                session_file_complete = session_file + \
                                        '_dmiwae' + str(mdc_arg['d_miwae']) + \
                                        '_sigprior' + str(mdc_arg['sig_prior'])
                epochs = -1
                tmp = glob.glob(session_file_complete + '.*')
                sess = tf.Session(graph=tf.reset_default_graph())
                if len(tmp) > 0:
                    new_saver = tf.train.import_meta_graph(
                        session_file_complete + '.meta')
                    new_saver.restore(sess, session_file_complete)
                    #with open(session_file_complete+'.pkl', 'rb') as f:
                    #    xhat, zhat, zhat_mul, elbo, epochs = pickle.load(f)
                else:
                    xhat, zhat, zhat_mul, elbo, epochs = miwae_es(
                        X_miss,
                        d_miwae=mdc_arg['d_miwae'],
                        mu_prior=mdc_arg['mu_prior'],
                        sig_prior=mdc_arg['sig_prior'],
                        num_samples_zmul=mdc_arg['num_samples_zmul'],
                        l_rate=mdc_arg['learning_rate'],
                        n_epochs=mdc_arg['n_epochs'],
                        save_session=True,
                        session_file=session_file)
                    new_saver = tf.train.import_meta_graph(
                        session_file_complete + '.meta')
                    new_saver.restore(sess, session_file_complete
                                      )  #tf.train.latest_checkpoint('./'))
                    with open(session_file_complete + '.pkl',
                              'wb') as file_data:  # Python 3: open(..., 'wb')
                        pickle.dump([xhat, zhat, zhat_mul, elbo, epochs],
                                    file_data)

                args['training_time'] = int(time.time() - t0)

                # Evaluate performance of trained model on new testsets
                graph = tf.get_default_graph()

                K = graph.get_tensor_by_name('K:0')
                x = graph.get_tensor_by_name('x:0')
                batch_size = tf.shape(x)[0]
                xms = graph.get_tensor_by_name('xms:0')
                imp_weights = graph.get_tensor_by_name('imp_weights:0')
                xm = tf.einsum('ki,kij->ij', imp_weights, xms, name='xm')

                zgivenx_flat = graph.get_tensor_by_name('zgivenx_flat:0')
                zgivenx = tf.reshape(zgivenx_flat,
                                     [K, batch_size, zgivenx_flat.shape[1]])
                z_hat = tf.einsum('ki,kij->ij',
                                  imp_weights,
                                  zgivenx,
                                  name='z_hat')

                sir_logits = graph.get_tensor_by_name('sir_logits:0')
                sirz = tfd.Categorical(logits=sir_logits).sample(
                    mdc_arg['num_samples_zmul'])
                zmul = graph.get_tensor_by_name('zmul:0')

                for test_seed in test_seeds:
                    if args['model'] == "lrmf":
                        (Z_test, X_test, w_test, y_test, ps_test, mu0_test,
                         mu1_test) = gen_lrmf(n=args['n'],
                                              d=args['d'],
                                              p=args['p'],
                                              y_snr=args['y_snr'],
                                              citcio=args['citcio'],
                                              prop_miss=args['prop_miss'],
                                              seed=test_seed)
                    elif args['model'] == "dlvm":
                        (
                            Z_test, X_test, w_test, y_test, ps_test, mu0_test,
                            mu1_test
                        ) = gen_dlvm(
                            n=args['n'],
                            d=args['d'],
                            p=args['p'],
                            y_snr=args['y_snr'],
                            citcio=args['citcio'],
                            prop_miss=args[
                                'prop_miss'],  # this argument is only used if citcio=True
                            seed=test_seed,
                            mu_z=args['mu_z'],
                            sig_z=args['sig_z'],
                            x_snr=args['x_snr'],
                            sig_xgivenz=args['sig_xgivenz'])

                    X_miss_test = ampute(X_test,
                                         prop_miss=args['prop_miss'],
                                         seed=args['seed'])
                    mask_test = np.isfinite(
                        X_miss_test
                    )  # binary mask that indicates which values are missing

                    t0 = time.time()
                    tmp_elm_pkl = glob.glob(session_file_complete +
                                            '_testset_eval' + str(test_seed) +
                                            '.pkl')
                    if len(tmp_elm_pkl) > 0:
                        with open(
                                session_file_complete + '_testset_eval' +
                                str(test_seed) + '.pkl', 'rb') as f:
                            xhat_test, zhat_test, zgivenx_test, zhat_mul_test = pickle.load(
                                f)
                    else:
                        x_test_imp0 = np.copy(X_miss_test)
                        x_test_imp0[np.isnan(X_miss_test)] = 0

                        n_test = X_test.shape[0]
                        xhat_test = np.copy(x_test_imp0)
                        zhat_test = np.zeros([n_test, mdc_arg['d_miwae']])
                        zgivenx_test = np.tile(
                            zhat_test, [mdc_arg['num_samples_zmul'], 1, 1])
                        zhat_mul_test = np.tile(
                            zhat_test, [mdc_arg['num_samples_zmul'], 1, 1])

                        for i in range(n_test):
                            zgivenx_test[:, i, :] = np.squeeze(
                                zgivenx.eval(session=sess,
                                             feed_dict={
                                                 'x:0':
                                                 x_test_imp0[i, :].reshape(
                                                     [1, args['p']]),
                                                 'K:0':
                                                 mdc_arg['num_samples_zmul'],
                                                 'xmask:0':
                                                 mask_test[i, :].reshape(
                                                     [1, args['p']])
                                             })).reshape([
                                                 mdc_arg['num_samples_zmul'],
                                                 mdc_arg['d_miwae']
                                             ])
                            xhat_test[i, :] = xm.eval(
                                session=sess,
                                feed_dict={
                                    'x:0':
                                    x_test_imp0[i, :].reshape([1, args['p']]),
                                    'K:0':
                                    10000,
                                    'xmask:0':
                                    mask_test[i, :].reshape([1, args['p']])
                                })
                            zhat_test[i, :] = z_hat.eval(
                                session=sess,
                                feed_dict={
                                    'x:0':
                                    x_test_imp0[i, :].reshape([1, args['p']]),
                                    'K:0':
                                    10000,
                                    'xmask:0':
                                    mask_test[i, :].reshape([1, args['p']])
                                })
                            si, zmu = sess.run(
                                [sirz, zmul],
                                feed_dict={
                                    'x:0':
                                    x_test_imp0[i, :].reshape([1, args['p']]),
                                    'K:0':
                                    10000,
                                    'xmask:0':
                                    mask_test[i, :].reshape([1, args['p']])
                                })
                            zhat_mul_test[:, i, :] = np.squeeze(
                                zmu[si, :, :]).reshape(
                                    (mdc_arg['num_samples_zmul'],
                                     mdc_arg['d_miwae']))

                        if save_test_data:
                            with open(
                                    session_file_complete + '_testset_eval' +
                                    str(test_seed) + '.pkl', 'wb'
                            ) as file_data:  # Python 3: open(..., 'wb')
                                pickle.dump([
                                    xhat_test, zhat_test, zgivenx_test,
                                    zhat_mul_test
                                ], file_data)

                    evaluation_time = int(time.time() - t0)

                    if args['d'] == 1 and mdc_arg['d_miwae'] == 1:
                        row = {
                            'Z_cor':
                            pearsonr(Z_test.reshape([
                                args['n'],
                            ]), zhat_test.reshape([
                                args['n'],
                            ]))[0]
                        }
                    else:
                        row = {'Z_cor': np.NaN}
                    if args['d'] == mdc_arg['d_miwae']:
                        row.update({'Z_mmd': mmd(Z_test, zhat_test, beta=1.)})
                        row.update({'Z_rvcoef': compute_rv(Z_test, zhat_test)})
                    else:
                        row.update({'Z_mmd': np.NaN})
                        row.update({'Z_rvcoef': np.NaN})
                    row.update(
                        {'X_mse': mean_squared_error(X_test, xhat_test)})
                    row.update({'X_mmd': mmd(X_test, xhat_test, beta=1.)})
                    row.update({'X_rvcoef': compute_rv(X_test, xhat_test)})
                    row.update(args)
                    row.update(mdc_arg)
                    row.update({'epochs': epochs})
                    row.update({'test_seed': test_seed})
                    row.update({'evaluation_time': evaluation_time})
                    res.append(row)

            log_res(
                output, res,
                l_metrics + list(args.keys()) + list(mdc_arg.keys()) +
                ['epochs', 'test_seed', 'evaluation_time'])
            logging.info('........... DONE')
            logging.info(f'in {time.time() - exp_time} s \n\n')

    logging.info('*' * 20)
    logging.info(f'Exp: {FLAGS.exp_name} succesfully ended.')
    logging.info('*' * 20)