Ejemplo n.º 1
0
    def apply(self, queue):
        '''
    Run Entry
    '''
        # The model shape is updated here
        params.MNROWS.value = 64
        params.MNCOLS.value = 64
        params.MNCNLS.value = 3

        model = Model()
        if params.RESTART:
            init = tf.group(tf.global_variables_initializer(),
                            tf.local_variables_initializer())

        # gpu_options = tf.GPUOptions(allow_growth=True)
        # sess_config = tf.ConfigProto(gpu_options=gpu_options)
        with tf.Session() as sess:
            summary_writer = tf.summary.FileWriter(str(params.SUMMARY_PATH),
                                                   graph=sess.graph,
                                                   max_queue=32,
                                                   flush_secs=300)
            saver = tf.train.Saver(max_to_keep=5,
                                   keep_checkpoint_every_n_hours=12,
                                   pad_step_number=True,
                                   save_relative_paths=True)

            if params.RESTART:
                sess.run(init)
            else:
                model_path = tf.train.latest_checkpoint(
                    str(params.CKPT_PATH), latest_filename=params.CKPT_FILE)
                saver.restore(sess, model_path)

            iqueue = queue['prep']
            oqueue = queue[self.name]

            rt = ModelRuntime(sess, summary_writer, saver)

            while not (params.SHOULD_FINISH.value == b'prep'
                       and iqueue.empty()):
                try:
                    msg = iqueue.get(timeout=params.QUEUE_TIMEOUT)
                except Q.Empty:
                    continue

                utils.msg_ud(msg, 'queue_info|run', oqueue.qsize())

                msg = model.apply(msg, rt)
                oqueue.put(msg)

        oqueue.close()
        oqueue.join_thread()
        params.SHOULD_FINISH.value = self.bname
        utils.eprint('runner: exit')
  def apply(self, queue):
    iqueue = queue['run']
    oqueue = queue[self.name]

    while not (params.SHOULD_FINISH.value == b'run' and iqueue.empty()):
      try:
        msg = iqueue.get(timeout=params.QUEUE_TIMEOUT)
      except Q.Empty:
        continue

      utils.msg_ud(msg, 'queue_info|post', oqueue.qsize())
      oqueue.put(msg)

    oqueue.close()
    oqueue.join_thread()
    params.SHOULD_FINISH.value = self.bname
    utils.eprint('postprocessor: exit')
Ejemplo n.º 3
0
  def update_runtime_meta(self, msg):
    '''
    Write the runtime meta file for restore running
    '''
    RT_META_PATH = params.LOGGING_PATH / params.RT_META_FILE

    meta = self.msgfactory.create_runtime_meta()
    utils.msg_ud(meta, 'gidx', utils.msg_gt(msg, 'message_info|gidx'))
    utils.msg_ud(meta, 'tidx', utils.msg_gt(msg, 'message_info|tidx'))
    utils.msg_ud(meta, 'vidx', utils.msg_gt(msg, 'message_info|vidx'))

    with RT_META_PATH.open('w') as f:
      json.dump(meta, f)
Ejemplo n.º 4
0
    def apply(self, queue):
        # The image shape maybe updated before preprocess
        params.INROWS.value = params.INROWS.value
        params.INCOLS.value = params.INCOLS.value
        params.INCNLS.value = params.INCNLS.value

        iqueue = queue['generate']
        oqueue = queue[self.name]

        while not (params.SHOULD_FINISH.value == b'generate'
                   and iqueue.empty()):
            try:
                msg = iqueue.get(timeout=params.QUEUE_TIMEOUT)
            except Q.Empty:
                continue

            utils.msg_ud(msg, 'queue_info|prep', oqueue.qsize())

            mode = utils.msg_gt(msg, 'message_info|mode')
            if mode == 'train':
                covr, hide = utils.msg_gt(msg,
                                          'image|covr/train'), utils.msg_gt(
                                              msg, 'image|hide/train')
            elif mode == 'valid':
                covr, hide = utils.msg_gt(msg,
                                          'image|covr/valid'), utils.msg_gt(
                                              msg, 'image|hide/valid')
            else:
                raise RuntimeError('Invalid mode: %s' % mode)

            utils.msg_ud(msg, 'image|orig_covr', covr)
            utils.msg_ud(msg, 'image|orig_hide', hide)
            oqueue.put(msg)

        oqueue.close()
        oqueue.join_thread()
        params.SHOULD_FINISH.value = self.bname
        utils.eprint('preprocessor: exit')
Ejemplo n.º 5
0
    def inference(self, msg, runtime):
        '''
    Inference model
    '''
        covr_img_v = utils.msg_gt(msg, 'image|orig_covr')
        hide_img_v = utils.msg_gt(msg, 'image|orig_hide')

        batch_size = params.BATCH_SIZE

        image_shape = [
            params.INROWS.value, params.INCOLS.value, params.INCNLS.value
        ]
        model_shape = [
            params.MNROWS.value, params.MNCOLS.value, params.MNCNLS.value
        ]
        mnrows, mncols, _ = image_shape
        inrows, incols, _ = model_shape

        slicer = utils.ImageSlicer(inrows, incols, mnrows, mncols)

        t_beg = timeit.default_timer()
        steg_img_v = np.zeros(shape=(batch_size, *image_shape))
        dcpt_img_v = np.zeros(shape=(batch_size, *image_shape))
        loss_va = []
        rcst_loss_va, rcst_vars_va, dcpt_loss_va, dcpt_vars_va = [], [], [], []
        for row_idx in range(inrows // mnrows):
            for col_idx in range(incols // mncols):
                # slice an image fragment at (row_idx, col_idx)
                covr_img_vs = slicer.slice(covr_img_v, row_idx, col_idx)
                hide_img_vs = slicer.slice(hide_img_v, row_idx, col_idx)

                loss_v, \
                rcst_loss_v, rcst_vars_v, dcpt_loss_v, dcpt_vars_v, \
                steg_img_vs, dcpt_img_vs = runtime.sess.run([
                    self.loss,
                    self.rcst_loss, self.rcst_vars, self.dcpt_loss, self.dcpt_vars,
                    self.steg_img, self.dcpt_img
                ], feed_dict={self.covr_img: covr_img_vs, self.hide_img: hide_img_vs})

                slicer.slice_assign(steg_img_v, row_idx, col_idx, steg_img_vs)
                slicer.slice_assign(dcpt_img_v, row_idx, col_idx, dcpt_img_vs)

                loss_va.append(loss_v)
                rcst_loss_va.append(rcst_loss_v)
                rcst_vars_va.append(rcst_vars_v)
                dcpt_loss_va.append(dcpt_loss_v)
                dcpt_vars_va.append(dcpt_vars_v)
        t_end = timeit.default_timer()
        t_diff = t_end - t_beg
        run_time = t_diff

        utils.msg_ud(msg, 'running|timing', run_time)
        utils.msg_ud(msg, 'running|train_cycle_timing', None)
        utils.msg_st(msg, 'image|steg', steg_img_v)
        utils.msg_st(msg, 'image|dcpt_covr', None)
        utils.msg_st(msg, 'image|dcpt_hide', dcpt_img_v)
        utils.msg_st(msg, 'post_info|loss', np.average(loss_va))
        utils.msg_st(msg, 'post_info|rcst_loss', np.average(rcst_loss_va))
        utils.msg_st(msg, 'post_info|rcst_vars', np.average(rcst_vars_va))
        utils.msg_st(msg, 'post_info|dcpt_loss', np.average(dcpt_loss_va))
        utils.msg_st(msg, 'post_info|dcpt_vars', np.average(dcpt_vars_va))

        return msg
Ejemplo n.º 6
0
    def train_once(self, msg, runtime):
        '''
    Train once
    '''
        utils.msg_ud(msg, 'running|task', 'train_once')

        covr_img_v = utils.msg_gt(msg, 'image|orig_covr')
        hide_img_v = utils.msg_gt(msg, 'image|orig_hide')

        gmode = params.GMODE
        mode = utils.msg_gt(msg, 'message_info|mode')
        heavy_logging = utils.msg_gt(msg, 'message_info|heavy_logging')
        batch_size = params.BATCH_SIZE

        image_shape = [
            params.INROWS.value, params.INCOLS.value, params.INCNLS.value
        ]
        model_shape = [
            params.MNROWS.value, params.MNCOLS.value, params.MNCNLS.value
        ]
        mnrows, mncols, _ = image_shape
        inrows, incols, _ = model_shape

        slicer = utils.ImageSlicer(inrows, incols, mnrows, mncols)

        t_beg = timeit.default_timer()
        steg_img_v = np.zeros(shape=(batch_size, *image_shape))
        dcpt_img_v = np.zeros(shape=(batch_size, *image_shape))
        loss_va = []
        rcst_loss_va, rcst_vars_va, dcpt_loss_va, dcpt_vars_va = [], [], [], []
        for row_idx in range(inrows // mnrows):
            for col_idx in range(incols // mncols):
                # slice an image fragment at (row_idx, col_idx)
                covr_img_vs = slicer.slice(covr_img_v, row_idx, col_idx)
                hide_img_vs = slicer.slice(hide_img_v, row_idx, col_idx)

                if gmode == 'train' and mode == 'train':
                    optm = self.optm
                else:
                    optm = self.dummy

                if heavy_logging:
                    smry = self.smry_hv
                else:
                    smry = self.smry_lt

                _, smry_v, \
                loss_v, \
                rcst_loss_v, rcst_vars_v, dcpt_loss_v, dcpt_vars_v, \
                steg_img_vs, dcpt_img_vs = runtime.sess.run([
                    optm, smry,
                    self.loss,
                    self.rcst_loss, self.rcst_vars, self.dcpt_loss, self.dcpt_vars,
                    self.steg_img, self.dcpt_img
                ], feed_dict={self.covr_img: covr_img_vs, self.hide_img: hide_img_vs})

                slicer.slice_assign(steg_img_v, row_idx, col_idx, steg_img_vs)
                slicer.slice_assign(dcpt_img_v, row_idx, col_idx, dcpt_img_vs)

                loss_va.append(loss_v)
                rcst_loss_va.append(rcst_loss_v)
                rcst_vars_va.append(rcst_vars_v)
                dcpt_loss_va.append(dcpt_loss_v)
                dcpt_vars_va.append(dcpt_vars_v)
        t_end = timeit.default_timer()
        t_diff = t_end - t_beg
        run_time = t_diff

        utils.msg_ud(msg, 'running|timing', run_time)
        utils.msg_ud(msg, 'running|train_cycle_timing', run_time)
        utils.msg_st(msg, 'image|steg', steg_img_v)
        utils.msg_st(msg, 'image|dcpt_covr', None)
        utils.msg_st(msg, 'image|dcpt_hide', dcpt_img_v)
        utils.msg_st(msg, 'post_info|loss', np.average(loss_va))
        utils.msg_st(msg, 'post_info|rcst_loss', np.average(rcst_loss_va))
        utils.msg_st(msg, 'post_info|rcst_vars', np.average(rcst_vars_va))
        utils.msg_st(msg, 'post_info|dcpt_loss', np.average(dcpt_loss_va))
        utils.msg_st(msg, 'post_info|dcpt_vars', np.average(dcpt_vars_va))

        if gmode == 'train' and mode == 'train':
            step_v = runtime.sess.run(self.g_step)
            runtime.summary_writer.add_summary(smry_v, step_v)
            runtime.sess.run(self.g_next_step)

        return msg
Ejemplo n.º 7
0
  def generator_valid(self, queue):
    '''
    Default valid generator for one step
    '''
    covr_valid, hide_valid = queue['covr/valid'].get_nowait(), queue['hide/valid'].get_nowait()
    epoch = self.tidx // params.DATASET_TRAIN_SIZE
    batch = self.tidx % params.DATASET_TRAIN_SIZE

    msg = self.message.create_message()
    utils.msg_ud(msg, 'queue_info|generator', queue[self.name].qsize())
    utils.msg_ud(msg, 'message_info|gidx', self.gidx)
    utils.msg_ud(msg, 'message_info|lidx', self.lidx)
    utils.msg_ud(msg, 'message_info|tidx', self.tidx)
    utils.msg_ud(msg, 'message_info|vidx', self.vidx)
    utils.msg_ud(msg, 'message_info|epoch', epoch)
    utils.msg_ud(msg, 'message_info|batch', batch)
    utils.msg_ud(msg, 'message_info|mode', 'valid')
    utils.msg_ud(msg, 'message_info|heavy_logging', True)
    utils.msg_ud(msg, 'image|covr/valid', covr_valid)
    utils.msg_ud(msg, 'image|hide/valid', hide_valid)
    self.gidx += 1
    self.lidx += 1
    self.vidx += 1
    return msg
Ejemplo n.º 8
0
  def generator_train(self, queue):
    '''
    Default train generator for one step
    '''
    covr_train, hide_train = queue['covr/train'].get_nowait(), queue['hide/train'].get_nowait()
    epoch = self.tidx // (params.DATASET_TRAIN_SIZE // params.BATCH_SIZE)
    batch = self.tidx % (params.DATASET_TRAIN_SIZE // params.BATCH_SIZE)
    heavy_logging = self.tidx % params.HEAVY_LOGGING_INTERVAL == 0

    msg = self.message.create_message()
    utils.msg_ud(msg, 'queue_info|generator', queue[self.name].qsize())
    utils.msg_ud(msg, 'message_info|gidx', self.gidx)
    utils.msg_ud(msg, 'message_info|lidx', self.lidx)
    utils.msg_ud(msg, 'message_info|tidx', self.tidx)
    utils.msg_ud(msg, 'message_info|vidx', self.vidx)
    utils.msg_ud(msg, 'message_info|epoch', epoch)
    utils.msg_ud(msg, 'message_info|batch', batch)
    utils.msg_ud(msg, 'message_info|mode', 'train')
    utils.msg_ud(msg, 'message_info|heavy_logging', heavy_logging)
    utils.msg_ud(msg, 'image|covr/train', covr_train)
    utils.msg_ud(msg, 'image|hide/train', hide_train)
    self.gidx += 1
    self.lidx += 1
    self.tidx += 1
    return msg