Ejemplo n.º 1
0
def getStandardPriors(data, options):
    """sets the standard Priors
    function priors = getStandardPriors(data,options)
    The priors set here are the ones used if the user does supply own priors.
    Thus this functions constitutes a way to change the priors permanently
    note here that the priors here are not normalized. Psignifit takes care
    of the normalization implicitly. """


    priors = []    
    
    """ threshold """
    xspread = options['stimulusRange'][1]-options['stimulusRange'][0]
    ''' we assume the threshold is in the range of the data, for larger or
        smaller values we tapre down to 0 with a raised cosine across half the
        dataspread '''

    priors.append(lambda x: prior1(x,xspread,options['stimulusRange']))
    
    """width"""
    # minimum = minimal difference of two stimulus levels
    widthmin = options['widthmin']
    
    widthmax = xspread
    ''' We use the same prior as we previously used... e.g. we use the factor by
        which they differ for the cumulative normal function'''
    Cfactor = (my_norminv(.95,0,1) - my_norminv(.05,0,1))/( my_norminv(1-options['widthalpha'],0,1) - my_norminv(options['widthalpha'],0,1))
    
    priors.append(lambda x: prior2(x,Cfactor, widthmin, widthmax))
    
    """ asymptotes 
    set asymptote prior to the 1, 10 beta prior, which corresponds to the
    knowledge obtained from 9 correct trials at infinite stimulus level
    """
    
    priors.append(lambda x: my_betapdf(x,1,10))
    priors.append(lambda x: my_betapdf(x,1,10))
    
    """ sigma """
    be = options['betaPrior']
    priors.append(lambda x: my_betapdf(x,1,be))
    
    return priors
    
    
    def __call__(self):
        import sys
        
        return getStandardPriors(sys.argv[1], sys.argv[2])
Ejemplo n.º 2
0
def getStandardPriors(data, options):
    """sets the standard Priors
    function priors = getStandardPriors(data,options)
    The priors set here are the ones used if the user does supply own priors.
    Thus this functions constitutes a way to change the priors permanently
    note here that the priors here are not normalized. Psignifit takes care
    of the normalization implicitly. """

    priors = []
    """ threshold """
    xspread = options['stimulusRange'][1] - options['stimulusRange'][0]
    ''' we assume the threshold is in the range of the data, for larger or
        smaller values we tapre down to 0 with a raised cosine across half the
        dataspread '''

    priors.append(lambda x: prior1(x, xspread, options['stimulusRange']))
    """width"""
    # minimum = minimal difference of two stimulus levels
    widthmin = options['widthmin']

    widthmax = xspread
    ''' We use the same prior as we previously used... e.g. we use the factor by
        which they differ for the cumulative normal function'''
    Cfactor = (my_norminv(.95, 0, 1) - my_norminv(.05, 0, 1)) / (
        my_norminv(1 - options['widthalpha'], 0, 1) -
        my_norminv(options['widthalpha'], 0, 1))

    priors.append(lambda x: prior2(x, Cfactor, widthmin, widthmax))
    """ asymptotes 
    set asymptote prior to the 1, 10 beta prior, which corresponds to the
    knowledge obtained from 9 correct trials at infinite stimulus level
    """

    priors.append(lambda x: my_betapdf(x, 1, 10))
    priors.append(lambda x: my_betapdf(x, 1, 10))
    """ sigma """
    be = options['betaPrior']
    priors.append(lambda x: my_betapdf(x, 1, be))

    return priors

    def __call__(self):
        import sys

        return getStandardPriors(sys.argv[1], sys.argv[2])
Ejemplo n.º 3
0
def setBorders(data,options):
    """ 
    automatically set borders on the parameters based on were you sampled.
    function Borders=setBorders(data,options)
    this function  sets borders on the parameter values of a given function
    automaically

    It sets: -the threshold to be within the range of the data +/- 50%
              -the width to half the distance of two datapoints up to 10 times
                       the range of the data
              -the lapse rate to 0 to .5
              -the lower asymptote to 0 to .5 or fix to 1/n for nAFC
              -the varscale to the full range from almost 0 to almost 1
    """

    widthmin = options['widthmin']
    # lapse fix to 0 - .5    
    lapseB = np.array([0,.5])
    
    if options['expType'] == 'nAFC':
        gammaB = np.array([1/options['expN'], 1/options['expN']])
    elif options['expType'] == 'YesNo':
        gammaB = np.array([0, .5])
    elif options['expType'] == 'equalAsymptote':
        gammaB = np.array([np.nan, np.nan])
    
    # varscale from 0 to 1, 1 excluded!
    varscaleB = np.array([0, 1-np.exp(-20)])  
        
    # if range was not given take from data
    '''if options['stimulusRange'].size <= 1 :
        options['stimulusRange'] = np.array([min(data[:,0]), max(data[:,0])])
        stimRangeSet = False
    else:
        stimRangeSet= True
        if options['logspace']:
            options['stimulusRange'] = np.log(options['stimulusRange'])
    '''
    
    '''
     We then assume it is one of the reparameterized functions with
     alpha=threshold and beta= width
     The threshold is assumed to be within the range of the data +/-
     .5 times it's spread
    '''
    dataspread = np.diff(options['stimulusRange'])
    alphaB = np.array([options['stimulusRange'][0] - .5*dataspread, options['stimulusRange'][1] +.5*dataspread]).squeeze()

    ''' the width we assume to be between half the minimal distance of
    two points and 5 times the spread of the data 
    
    if len(np.unique(data[:,0])) > 1 and not(stimRangeSet):
        widthmin = np.min(np.diff(np.sort(np.unique(data[:,0]))))
    else :
        widthmin = 100*np.spacing(options['stimulusRange'][1])
        '''
    
    ''' We use the same prior as we previously used... e.g. we use the factor by
    which they differ for the cumulative normal function '''
    
    Cfactor = (my_norminv(.95,0,1) - my_norminv(.05, 0,1))/(my_norminv(1- options['widthalpha'], 0,1) - my_norminv(options['widthalpha'], 0,1))
    betaB  = np.array([widthmin, 3/Cfactor*dataspread])
    
    borders =[[alphaB], [betaB], [lapseB], [gammaB], [varscaleB]]
    borders = np.array(borders).squeeze()
    
    return borders 
Ejemplo n.º 4
0
def plotPrior(result, 
              lineWidth = 2, 
              lineColor = np.array([0,105,170])/255,
              markerSize = 30):
    
    """
    This function creates the plot illustrating the priors on the different 
    parameters
    """
    
    data = result['data']

    if np.size(result['options']['stimulusRange']) <= 1:
        result['options']['stimulusRange'] = np.array([min(data[:,0]), max(data[:,0])])
        stimRangeSet = False
    else:
        stimRangeSet = True
        
    stimRange = result['options']['stimulusRange']
    r = stimRange[1] - stimRange[0]
    
    # get borders for width
    # minimum = minimal difference of two stimulus levels
    
    if len(np.unique(data[:,0])) > 1 and not(stimRangeSet):
        widthmin = min(np.diff(np.sort(np.unique(data[:,0]))))
    else:
        widthmin = 100*np.spacing(stimRange[1])
    # maximum = spread of the data

    # We use the same prior as we previously used... e.g. we use the factor by
    # which they differ for the cumulative normal function
    Cfactor = (my_norminv(.95,0,1) - my_norminv(.05,0,1))/          \
            (my_norminv(1-result['options']['widthalpha'], 0,1) -   \
             my_norminv(result['options']['widthalpha'], 0,1))
    widthmax = r
    
    steps = 10000
    theta = np.empty(5)
    for itheta in range(0,5):
        if itheta == 0:
            x = np.linspace(stimRange[0]-.5*r, stimRange[1]+.5*r, steps)
        elif itheta == 1:
            x = np.linspace(min(result['X1D'][itheta]), max(result['X1D'][1],),steps)
        elif itheta == 2:
            x = np.linspace(0,.5,steps)
        elif itheta == 3:
            x = np.linspace(0,.5,steps)
        elif itheta == 4:                
            x = np.linspace(0,1,steps)
        
        y = result['options']['priors'][itheta](x)
        theta[itheta] = np.sum(x*y)/np.sum(y)
        
    if result['options']['expType'] == 'equalAsymptote':
        theta[3] = theta[2]
    if result['options']['expType'] == 'nAFC':
        theta[3] = 1/result['options']['expN']
        
    # get limits for the psychometric function plots
    xLimit = [stimRange[0] - .5*r , stimRange[1] +.5*r]
    
    """ threshold """
    
    xthresh = np.linspace(xLimit[0], xLimit[1], steps )
    ythresh = result['options']['priors'][0](xthresh)
    wthresh = convn(np.diff(xthresh), .5*np.array([1,1])) 
    cthresh = np.cumsum(ythresh*wthresh)
    
    plt.subplot(2,3,1)
    plt.plot(xthresh,ythresh, lw = lineWidth, c= lineColor)
    plt.hold(True)
    plt.xlim(xLimit)
    plt.title('Threshold', fontsize = 18)
    plt.ylabel('Density',  fontsize = 18)
    
    plt.subplot(2,3,4)    
    plt.plot(data[:,0], np.zeros(data[:,0].shape), 'k.', ms = markerSize*.75 )
    plt.hold(True)
    plt.ylabel('Percent Correct', fontsize = 18)
    plt.xlim(xLimit)
    
    for idot in range(0,5):
        if idot == 0:
            xcurrent = theta[0]
            color = 'k'
        elif idot == 1:
            xcurrent = min(xthresh)
            color = [1,200/255,0]
        elif idot == 2:
            tix = cthresh[cthresh >=.25].size
            xcurrent = xthresh[-tix]
            color = 'r'
        elif idot == 3:
            tix = cthresh[cthresh >= .75].size
            xcurrent = xthresh[-tix]
            color = 'b'
        elif idot == 4:
            xcurrent = max(xthresh)
            color = 'g'
        y = 100*(theta[3]+(1-theta[2])-theta[3])*result['options']['sigmoidHandle'](x,xcurrent, theta[1])
        
        plt.subplot(2,3,4)
        plt.plot(x,y, '-', lw=lineWidth,c=color )
        plt.subplot(2,3,1)
        plt.plot(xcurrent, result['options']['priors'][0](xcurrent), '.',c=color, ms = markerSize)
    
    """ width"""
    xwidth = np.linspace(widthmin, 3/Cfactor*widthmax, steps)
    ywidth = result['options']['priors'][1](xwidth)
    wwidth = convn(np.diff(xwidth), .5*np.array([1,1]))
    cwidth = np.cumsum(ywidth*wwidth)

    plt.subplot(2,3,2)
    plt.plot(xwidth,ywidth,lw=lineWidth,c=lineColor)
    plt.hold(True)
    plt.xlim([widthmin,3/Cfactor*widthmax])
    plt.title('Width',fontsize=18)

    plt.subplot(2,3,5)
    plt.plot(data[:,0],np.zeros(data[:,0].size),'k.',ms =markerSize*.75)
    plt.hold(True)
    plt.xlim(xLimit)
    plt.xlabel('Stimulus Level',fontsize=18)

    x = np.linspace(xLimit[0],xLimit[1],steps)
    for idot in range(0,5):
        if idot == 0:
            xcurrent = theta[1]
            color = 'k'
        elif idot == 1:
            xcurrent = min(xwidth)
            color = [1,200/255,0]
        elif idot == 2:
            wix = cwidth[cwidth >= .25].size
            xcurrent = xwidth[-wix]
            color = 'r'
        elif idot == 3:
            wix = cwidth[cwidth >= .75].size
            xcurrent = xwidth[-wix]
            color = 'b'
        elif idot ==4:
            xcurrent = max(xwidth)
            color = 'g'
    
        y = 100*(theta[3]+ (1-theta[2] -theta[3])* result['options']['sigmoidHandle'](x,theta[0],xcurrent))
        plt.subplot(2,3,5)
        plt.plot(x,y,'-',lw = lineWidth, c= color)
        plt.subplot(2,3,2)
        plt.plot(xcurrent,result['options']['priors'][1](xcurrent),'.',c = color,ms=markerSize)

    """ lapse """

    xlapse = np.linspace(0,.5,steps)
    ylapse = result['options']['priors'][2](xlapse)
    wlapse = convn(np.diff(xlapse),.5*np.array([1,1]))
    clapse = np.cumsum(ylapse*wlapse)
    plt.subplot(2,3,3)
    plt.plot(xlapse,ylapse,lw=lineWidth,c=lineColor)
    plt.hold(True)
    plt.xlim([0,.5])
    plt.title('\lambda',fontsize=18)

    plt.subplot(2,3,6)
    plt.plot(data[:,0],np.zeros(data[:,0].size),'k.',ms=markerSize*.75)
    plt.hold(True)
    plt.xlim(xLimit)


    x = np.linspace(xLimit[0],xLimit[1],steps)
    for idot in range(0,5):
        if idot == 0:
            xcurrent = theta[2]
            color = 'k'
        elif idot == 1:
            xcurrent = 0
            color = [1,200/255,0]
        elif idot == 2:
            lix = clapse[clapse >= .25].size
            xcurrent = xlapse[-lix]
            color = 'r'
        elif idot == 3:
            lix = clapse[clapse >= .75].size
            xcurrent = xlapse[-lix]
            color = 'b'
        elif idot ==4:
            xcurrent = .5
            color = 'g'
        y = 100*(theta[3]+ (1-xcurrent-theta[3])*result['options']['sigmoidHandle'](x,theta[0],theta[1]))
        plt.subplot(2,3,6)
        plt.plot(x,y,'-',lw=lineWidth,c=color)
        plt.subplot(2,3,3)
        plt.plot(xcurrent,result['options']['priors'][2](xcurrent),'.',c=color,ms=markerSize)


    a_handle = plt.gca()
    a_handle.set_position([200,300,1000,600])
    fig, ax = plt.subplots()
    
    for item in [fig, ax]:
        item.patch.set_visible(False)
Ejemplo n.º 5
0
    
    
    
if __name__ == "__main__":
    result = {}
    
    result['Fit'] = np.array([.004651, .004658, 1.7125E-7, .5, 1.0632E-4])
    
    options = {}
    options['expType'] = 'nAFC'
    options['expN'] = 2
    options['logspace'] = False
    options['threshPC'] = .5
    from utils import my_normcdf
    alpha = .05
    C = my_norminv(1-alpha,0,1)-my_norminv(alpha,0,1)
    options['sigmoidHandle'] = lambda X,m,width: my_normcdf(X, (m-my_norminv(.5,0,width/C)), width/C)    
    
    tmp1 = np.array([10,15,20,25,30,35,40,45,50,60,70,80,100], dtype=float)/10000
    tmp2 = np.array([45,50,44,44,52,53,62,64,76,79,88,90,90], dtype=float)
    tmp3 = np.array([90 for i in range(len(tmp1))], dtype=float)
    data = np.array([tmp1,tmp2,tmp3]).T
    result['data'] = data
    
    options['stimulusRange'] = 0
    options['widthalpha'] = .05
    options['betaPrior'] = 10
    options['priors'] = [lambda x: [74.074074196287796 for i in range(len(x))]]
    result['options'] = options
    
    CIs = np.zeros((5,2,3))
Ejemplo n.º 6
0
def setBorders(data,options):
    """ 
    automatically set borders on the parameters based on were you sampled.
    function Borders=setBorders(data,options)
    this function  sets borders on the parameter values of a given function
    automaically

    It sets: -the threshold to be within the range of the data +/- 50%
              -the width to half the distance of two datapoints up to 10 times
                       the range of the data
              -the lapse rate to 0 to .5
              -the lower asymptote to 0 to .5 or fix to 1/n for nAFC
              -the varscale to the full range from almost 0 to almost 1
    """

    widthmin = options['widthmin']
    # lapse fix to 0 - .5    
    lapseB = np.array([0,.5])
    
    if options['expType'] == 'nAFC':
        gammaB = np.array([1/options['expN'], 1/options['expN']])
    elif options['expType'] == 'YesNo':
        gammaB = np.array([0, .5])
    elif options['expType'] == 'equalAsymptote':
        gammaB = np.array([np.nan, np.nan])
    
    # varscale from 0 to 1, 1 excluded!
    varscaleB = np.array([0, 1-np.exp(-20)])  
        
    # if range was not given take from data
    '''if options['stimulusRange'].size <= 1 :
        options['stimulusRange'] = np.array([min(data[:,0]), max(data[:,0])])
        stimRangeSet = False
    else:
        stimRangeSet= True
        if options['logspace']:
            options['stimulusRange'] = np.log(options['stimulusRange'])
    '''
    
    '''
     We then assume it is one of the reparameterized functions with
     alpha=threshold and beta= width
     The threshold is assumed to be within the range of the data +/-
     .5 times it's spread
    '''
    dataspread = np.diff(options['stimulusRange'])
    alphaB = np.array([options['stimulusRange'][0] - .5*dataspread, options['stimulusRange'][1] +.5*dataspread]).squeeze()

    ''' the width we assume to be between half the minimal distance of
    two points and 5 times the spread of the data 
    
    if len(np.unique(data[:,0])) > 1 and not(stimRangeSet):
        widthmin = np.min(np.diff(np.sort(np.unique(data[:,0]))))
    else :
        widthmin = 100*np.spacing(options['stimulusRange'][1])
        '''
    
    ''' We use the same prior as we previously used... e.g. we use the factor by
    which they differ for the cumulative normal function '''
    
    Cfactor = (my_norminv(.95,0,1) - my_norminv(.05, 0,1))/(my_norminv(1- options['widthalpha'], 0,1) - my_norminv(options['widthalpha'], 0,1))
    betaB  = np.array([widthmin, 3/Cfactor*dataspread])
    
    borders =[[alphaB], [betaB], [lapseB], [gammaB], [varscaleB]]
    borders = np.array(borders).squeeze()
    
    return borders 
Ejemplo n.º 7
0
def plotPrior(result,
              lineWidth=2,
              lineColor=np.array([0, 105, 170]) / 255,
              markerSize=30,
              showImediate=True):
    """
    This function creates the plot illustrating the priors on the different 
    parameters
    """

    data = result['data']

    if np.size(result['options']['stimulusRange']) <= 1:
        result['options']['stimulusRange'] = np.array(
            [min(data[:, 0]), max(data[:, 0])])
        stimRangeSet = False
    else:
        stimRangeSet = True

    stimRange = result['options']['stimulusRange']
    r = stimRange[1] - stimRange[0]

    # get borders for width
    # minimum = minimal difference of two stimulus levels

    if len(np.unique(data[:, 0])) > 1 and not (stimRangeSet):
        widthmin = min(np.diff(np.sort(np.unique(data[:, 0]))))
    else:
        widthmin = 100 * np.spacing(stimRange[1])
    # maximum = spread of the data

    # We use the same prior as we previously used... e.g. we use the factor by
    # which they differ for the cumulative normal function
    Cfactor = (_utils.my_norminv(.95,0,1) - _utils.my_norminv(.05,0,1))/          \
            (_utils.my_norminv(1-result['options']['widthalpha'], 0,1) -   \
             _utils.my_norminv(result['options']['widthalpha'], 0,1))
    widthmax = r

    steps = 10000
    theta = np.empty(5)
    for itheta in range(0, 5):
        if itheta == 0:
            x = np.linspace(stimRange[0] - .5 * r, stimRange[1] + .5 * r,
                            steps)
        elif itheta == 1:
            x = np.linspace(min(result['X1D'][itheta]),
                            max(result['X1D'][1], ), steps)
        elif itheta == 2:
            x = np.linspace(0, .5, steps)
        elif itheta == 3:
            x = np.linspace(0, .5, steps)
        elif itheta == 4:
            x = np.linspace(0, 1, steps)

        y = result['options']['priors'][itheta](x)
        theta[itheta] = np.sum(x * y) / np.sum(y)

    if result['options']['expType'] == 'equalAsymptote':
        theta[3] = theta[2]
    if result['options']['expType'] == 'nAFC':
        theta[3] = 1 / result['options']['expN']

    # get limits for the psychometric function plots
    xLimit = [stimRange[0] - .5 * r, stimRange[1] + .5 * r]
    """ threshold """

    xthresh = np.linspace(xLimit[0], xLimit[1], steps)
    ythresh = result['options']['priors'][0](xthresh)
    wthresh = _convn(np.diff(xthresh), .5 * np.array([1, 1]))
    cthresh = np.cumsum(ythresh * wthresh)

    plt.subplot(2, 3, 1)
    plt.plot(xthresh, ythresh, lw=lineWidth, c=lineColor)
    plt.hold(True)
    plt.xlim(xLimit)
    plt.title('Threshold', fontsize=18)
    plt.ylabel('Density', fontsize=18)

    plt.subplot(2, 3, 4)
    plt.plot(data[:, 0], np.zeros(data[:, 0].shape), 'k.', ms=markerSize * .75)
    plt.hold(True)
    plt.ylabel('Percent Correct', fontsize=18)
    plt.xlim(xLimit)

    x = np.linspace(xLimit[0], xLimit[1], steps)
    for idot in range(0, 5):
        if idot == 0:
            xcurrent = theta[0]
            color = 'k'
        elif idot == 1:
            xcurrent = min(xthresh)
            color = [1, 200 / 255, 0]
        elif idot == 2:
            tix = cthresh[cthresh >= .25].size
            xcurrent = xthresh[-tix]
            color = 'r'
        elif idot == 3:
            tix = cthresh[cthresh >= .75].size
            xcurrent = xthresh[-tix]
            color = 'b'
        elif idot == 4:
            xcurrent = max(xthresh)
            color = 'g'
        y = 100 * (theta[3] + ((1 - theta[2]) - theta[3]) *
                   result['options']['sigmoidHandle'](x, xcurrent, theta[1]))

        plt.subplot(2, 3, 4)
        plt.plot(x, y, '-', lw=lineWidth, c=color)
        plt.subplot(2, 3, 1)
        plt.plot(xcurrent,
                 result['options']['priors'][0](xcurrent),
                 '.',
                 c=color,
                 ms=markerSize)
    """ width"""
    xwidth = np.linspace(widthmin, 3 / Cfactor * widthmax, steps)
    ywidth = result['options']['priors'][1](xwidth)
    wwidth = _convn(np.diff(xwidth), .5 * np.array([1, 1]))
    cwidth = np.cumsum(ywidth * wwidth)

    plt.subplot(2, 3, 2)
    plt.plot(xwidth, ywidth, lw=lineWidth, c=lineColor)
    plt.hold(True)
    plt.xlim([widthmin, 3 / Cfactor * widthmax])
    plt.title('Width', fontsize=18)

    plt.subplot(2, 3, 5)
    plt.plot(data[:, 0], np.zeros(data[:, 0].size), 'k.', ms=markerSize * .75)
    plt.hold(True)
    plt.xlim(xLimit)
    plt.xlabel('Stimulus Level', fontsize=18)

    x = np.linspace(xLimit[0], xLimit[1], steps)
    for idot in range(0, 5):
        if idot == 0:
            xcurrent = theta[1]
            color = 'k'
        elif idot == 1:
            xcurrent = min(xwidth)
            color = [1, 200 / 255, 0]
        elif idot == 2:
            wix = cwidth[cwidth >= .25].size
            xcurrent = xwidth[-wix]
            color = 'r'
        elif idot == 3:
            wix = cwidth[cwidth >= .75].size
            xcurrent = xwidth[-wix]
            color = 'b'
        elif idot == 4:
            xcurrent = max(xwidth)
            color = 'g'

        y = 100 * (theta[3] + (1 - theta[2] - theta[3]) *
                   result['options']['sigmoidHandle'](x, theta[0], xcurrent))
        plt.subplot(2, 3, 5)
        plt.plot(x, y, '-', lw=lineWidth, c=color)
        plt.subplot(2, 3, 2)
        plt.plot(xcurrent,
                 result['options']['priors'][1](xcurrent),
                 '.',
                 c=color,
                 ms=markerSize)
    """ lapse """

    xlapse = np.linspace(0, .5, steps)
    ylapse = result['options']['priors'][2](xlapse)
    wlapse = _convn(np.diff(xlapse), .5 * np.array([1, 1]))
    clapse = np.cumsum(ylapse * wlapse)
    plt.subplot(2, 3, 3)
    plt.plot(xlapse, ylapse, lw=lineWidth, c=lineColor)
    plt.hold(True)
    plt.xlim([0, .5])
    plt.title('\lambda', fontsize=18)

    plt.subplot(2, 3, 6)
    plt.plot(data[:, 0], np.zeros(data[:, 0].size), 'k.', ms=markerSize * .75)
    plt.hold(True)
    plt.xlim(xLimit)

    x = np.linspace(xLimit[0], xLimit[1], steps)
    for idot in range(0, 5):
        if idot == 0:
            xcurrent = theta[2]
            color = 'k'
        elif idot == 1:
            xcurrent = 0
            color = [1, 200 / 255, 0]
        elif idot == 2:
            lix = clapse[clapse >= .25].size
            xcurrent = xlapse[-lix]
            color = 'r'
        elif idot == 3:
            lix = clapse[clapse >= .75].size
            xcurrent = xlapse[-lix]
            color = 'b'
        elif idot == 4:
            xcurrent = .5
            color = 'g'
        y = 100 * (theta[3] + (1 - xcurrent - theta[3]) *
                   result['options']['sigmoidHandle'](x, theta[0], theta[1]))
        plt.subplot(2, 3, 6)
        plt.plot(x, y, '-', lw=lineWidth, c=color)
        plt.subplot(2, 3, 3)
        plt.plot(np.array(xcurrent),
                 result['options']['priors'][2](np.array(xcurrent)),
                 '.',
                 c=color,
                 ms=markerSize)
    if (showImediate):
        plt.show()