Ejemplo n.º 1
0
    _opt = optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.98), eps=1e-9)
    optimizer = get_optimizer(_opt)

    if LOAD_MODEL:
        logging.info('---------- Load Models ----------')
        save_obj = torch.load(f'{OUTPUT_DIR}/{FN}.pth')
        model.module.load(save_obj['model'])
        optimizer.load(save_obj['opt'], save_obj['param'])
        start_epoch = save_obj['epoch']

    logging.info('---------- Preparing training data ----------')
    with open(TRAIN_DATA_PATH, 'rb') as f:
        train_data = pickle.load(f)

    with open(TEST_DATA_PKL_PATH, 'rb') as f:
        valid_data = pickle.load(f)

    train_dataset = DialogDataset(train_data)
    valid_dataset = DialogDataset(valid_data)

    train_data_loader = DataLoader(train_dataset,
                                   batch_size=BATCH_SIZE,
                                   shuffle=True)
    valid_data_loader = DataLoader(valid_dataset,
                                   batch_size=BATCH_SIZE,
                                   shuffle=True)

    logging.info('---------- Start Training ----------')
    one_cycle(model, optimizer, criterion, train_data_loader,
              valid_data_loader, sp, device, start_epoch)
Ejemplo n.º 2
0
Archivo: main.py Proyecto: NukeA/Dialog
    seed_everything(Config.seed)
    device = torch.device(Config.device)

    start_epoch = 0

    logging.info('Define Models')
    model = build_model(Config).to(device)
    tokenizer = Tokenizer.from_pretrained(Config.model_name)

    logging.info('Define Loss and Optimizer')
    criterion = LabelSmoothing(tokenizer.vocab_size,
                               pad_id=tokenizer.pad_token_id,
                               smoothing=Config.smoothing)
    _opt = optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)
    optimizer = get_optimizer(_opt, factor=Config.factor, warmup=Config.warmup)

    logging.info('Preparing training data')
    if Config.use_pickle:
        with open(f'{Config.pickle_path}', 'rb') as f:
            train_data = pickle.load(f)
    else:
        train_data = make_train_data_from_txt(Config, tokenizer)
    dataset = DialogDataset(train_data, tokenizer)

    logging.info('Start Training')
    for epoch in range(start_epoch, Config.n_epoch):
        one_cycle(epoch, Config, model, optimizer, criterion,
                  BalancedDataLoader(dataset, tokenizer.pad_token_id),
                  tokenizer, device)
        evaluate(Config, 'もう疲れたー', tokenizer, model, device)
Ejemplo n.º 3
0
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay) and p.requires_grad
            ],
            "weight_decay":
            0.0
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=Config.learning_rate,
                      eps=Config.adam_epsilon)
    scheduler = get_cosine_schedule_with_warmup(optimizer,
                                                num_warmup_steps=t_total * 0.2,
                                                num_training_steps=t_total)

    if Config.load:
        state_dict = torch.load(f'{Config.data_dir}/{Config.fn}.pth',
                                map_location=device)
        start_epoch = 0
        print(f'Start Epoch: {start_epoch}')
        model.load_state_dict(state_dict['model'], strict=False)
        # optimizer.load_state_dict(state_dict['opt'],strict=False)
        # scheduler.load_state_dict(state_dict['scheduler'])

    logging.info('Start Training')
    print("Total steps: ", t_total)
    for epoch in range(start_epoch, Config.num_train_epochs):
        one_cycle(epoch, Config, model, optimizer, scheduler, data_loader,
                  tokenizer, device)