Ejemplo n.º 1
0
    def __init__(self, name, project):
        fname = "{}-{}.h5".format(name, project)
        self.fname = os.path.join(DIR, fname)

        # Uses default im_list
        config = utils.get_config(project)
        self.im_list = utils.open_im_list(config["im_list"])
        self.n = len(self.im_list)

        self.save_freq = 10

        # Metrics
        # im x NUMCLASS
        self.load()

        assert self.precision.shape[0] == self.n
        assert self.recall.shape[0] == self.n
        assert self.iou.shape[0] == self.n
Ejemplo n.º 2
0
            gt_s = image_utils.scale_maxside(gt, maxside=maxside)

        box = image_utils.random_crop(img_s)
        data = image_utils.crop_array(img_s, box)
        label = image_utils.crop_array(gt_s, box)

        # Batch size of 1
        data = data[np.newaxis, ...]
        label = label[np.newaxis, ...]
        yield (data, label)


if __name__ == "__main__":
    project = "local"
    config = utils.get_config(project)
    im_list = utils.open_im_list(config["im_list"])
    datasource = DataSource(config)
    generator = DataGenerator(im_list, datasource, maxside=512)

    data, label = generator.next()
    print data.shape
    print label.shape

    data = data[0]
    label = label[0]

    unlabeled = np.max(label, axis=2) == 0
    gt = np.argmax(label, axis=2) + 1
    gt[unlabeled] = 0
    gt = utils.add_color(gt)
Ejemplo n.º 3
0
    config = utils.get_config(args.project)
    if args.prediction is not None:
        config["pspnet_prediction"] = args.prediction

    datasource = DataSource(config)
    evaluator = Evaluator(args.name, args.project,
                          datasource)  # Evaluation results
    vis = ProjectVisualizer(args.project,
                            datasource,
                            MAX=args.number,
                            evaluator=evaluator)

    # Image List
    im_list = None
    if args.im_list:
        # Open specific image list
        im_list = utils.open_im_list(args.im_list)
    elif args.category:
        im_list = evaluator.get_im_list_by_category(args.category)
    else:
        # Open default image list
        im_list = utils.open_im_list(config["im_list"])

    if args.randomize:
        # Shuffle image list
        random.seed(3)
        random.shuffle(im_list)

    im_list = im_list[args.start:]
    vis.visualize_images(im_list, category=args.category)
Ejemplo n.º 4
0
        img_color = np.zeros((h,w,3))
        for i in xrange(1,151):
            img_color[img == i] = utils.to_color(i)
        path = self.save(img_color)
        return img_color, path

    def save(self, img):
        fname = "{}.jpg".format(uuid.uuid4().hex)
        path = os.path.join(IMAGES_DIR, fname)
        misc.imsave(path, img)
        return path

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('-p', '--project', required=True, help="Project name")
    parser.add_argument('-i', '--image', help="Image name")
    args = parser.parse_args()

    im = args.image
    if not args.image:
        im_list = utils.open_im_list(args.project)
        im = im_list[0]

    print args.project, im
    config = utils.get_config(args.project)
    datasource = DataSource(config)
    vis = ImageVisualizer(args.project, datasource)
    paths = vis.visualize(im)
    print paths