def main(): parse_args(config) set_logger(config, logger) if config['daemon']: daemon() pid_file = config['pidfile'] mk_pid_file(pid_file) run_server(config)
def conv_spatial(): mpi_num_procs, omp_num_threads = utils.parse_args() num_steps = 10 T_END = 1.0 # ############################################################################ # # TEST 2: SPATIAL CONVERGENCE # ############################################################################ tl_factor = 0.1 tl_init = 1 tl_list = [tl_init*math.pow(tl_factor,float(cnt)) for cnt in range(0,num_steps)] dt_factor = 1 dt_init = T_END/2**20 dt_list = [dt_init*math.pow(dt_factor,float(cnt)) for cnt in range(0,num_steps)] tn_factor = 1.0/dt_factor tn_init = 1 tn_list = [tn_init*math.pow(tn_factor,float(cnt)) for cnt in range(0,num_steps)] # NUM MPI PROCESSES np_list = [mpi_num_procs for cnt in range(0, num_steps)] # NUM OMP THREADS nt_list = [omp_num_threads for cnt in range(0, num_steps)] cmd_args = generate_command_args(tl_list,\ dt_list,\ tn_list,\ # de_list,\ # q_list, \ np_list,\ nt_list,\ num_steps) utils.execute_commands(cmd_args,'spatial')
def conv_temporal(): mpi_num_procs, omp_num_threads = utils.parse_args() num_steps = 8 ############################################################################ # TEST 1: TEMPORAL CONVERGENCE ############################################################################ # prog = 'advdiff-ss' # prog = 'advdiff-ss-tv' prog = 'advdiff-ss-tv-extrap' vtk_save_rate = 0 mrg_type = 3 np = mpi_num_procs num_pnts = 8**(math.floor(math.log(np,8)+1)) nt = omp_num_threads # TREE TOLERANCE tl_factor = 1#0.1 tl_init = 1e-5 tl_list = [tl_init*math.pow(tl_factor,float(cnt)) for cnt in range(0,num_steps)] # TIME RESOLUTION dt_factor = 0.5 # dt_init = 0.1/16#0.5**5 dt_init = 0.5**0 dt_list = [dt_init*math.pow(dt_factor,float(cnt)) for cnt in range(0,num_steps)] # NUM TIME STEPS T_END = 1.0 tn_factor = 1.0/dt_factor tn_init = T_END/dt_init tn_list = [tn_init*math.pow(tn_factor,float(cnt)) for cnt in range(0,num_steps)] dp_list = [15 for cnt in range(0,num_steps)] cq_list = [14 for cnt in range(0,num_steps)] ci_list = [True for cnt in range(0,num_steps)] uf_list = [2 for cnt in range(0,num_steps)] pn_list = [num_pnts for cnt in range(0,num_steps)] np_list = [np for cnt in range(0,num_steps)] nt_list = [nt for cnt in range(0,num_steps)] mg_list = [mrg_type for cnt in range(0,num_steps)] vs_list = [vtk_save_rate for cnt in range(0,num_steps)] tt_list = [11 for cnt in range(0,num_steps)] cmd_args = OrderedDict() cmd_args = utils.generate_commands( prog, pn_list, tl_list, dp_list, cq_list, ci_list, uf_list, np_list, nt_list, dt_list, tn_list, vs_list, mg_list, tt_list) utils.execute_commands(cmd_args, 'temporal')
def _parse_args(self, args_str): parser = argparse.ArgumentParser() help="Path to contrail-api conf file, default /etc/contrail-api.conf" parser.add_argument( "--api-conf", help=help, default="/etc/contrail/contrail-api.conf") parser.add_argument( "--verbose", help="Run in verbose/INFO mode, default False", action='store_true', default=False) parser.add_argument( "--debug", help="Run in debug mode, default False", action='store_true', default=False) parser.add_argument( "--ifmap-servers", help="List of ifmap-ip:ifmap-port, default from api-conf") parser.add_argument( "--ifmap-credentials", help="<username>:<password> for read-only user", required=True) args_obj, remaining_argv = parser.parse_known_args(args_str.split()) self._args = args_obj self._api_args = utils.parse_args('-c %s %s' %(self._args.api_conf, ' '.join(remaining_argv)))[0]
def conv_temporal_spatial(): mpi_num_procs, omp_num_threads = utils.parse_args() prog = 'advection' num_steps = 8 ############################################################################ # TEST 3: TEMPORAL/SPATIAL ERROR ############################################################################ tl_fact = 0.1 tl_init = 1e-1 tl_list = [tl_init*math.pow(tl_fact,float(cnt)) for cnt in range(0,num_steps)] dt_fact = 0.5 dt_init = 1 dt_list = [dt_init*math.pow(dt_fact,float(cnt)) for cnt in range(0,num_steps)] tn_fact = 1.0/dt_fact tn_init = T_END/dt_init tn_list = [tn_init*math.pow(tn_fact,float(cnt)) for cnt in range(0,num_steps)] # NUM MPI PROCESSES np_list = [mpi_num_procs for cnt in range(0, num_steps)] # NUM OMP THREADS nt_list = [omp_num_threads for cnt in range(0, num_steps)]
def test_parse_args__empty(self): """with empty args.""" dummy_request = dummy({}) result = utils.parse_args(dummy_request, {}) self.assertTrue('results' in result) self.assertEqual(result['results'], {}) self.assertTrue('errors' in result) self.assertEqual(result['errors'], [])
def test_parse_args__invalid(self): """with invalid args.""" dummy_request = dummy({'price': 'Error Message', 'downpayment': 10}) result = utils.parse_args(dummy_request, params) self.assertTrue('results' in result) self.assertTrue('price' not in result['results']) self.assertTrue('errors' in result) self.assertTrue('Error Message' in result['errors'][0])
def load(self, parser_args): try: # parse the supplied args with ConfigParser.parse_args self._args = self._parser.parse_args(parser_args) except IOError as e: log.error("Could not open file %s: %s" % (e.filename, e.strerror)) exit(1) if self._args.debug: log.setLevel(logging.DEBUG) log.debug("Debug enabled") self.METHOD_TYPE = getattr(self._args, 'type') self.METHOD = getattr(self._args, 'subparser_name') if self.METHOD not in ['help']: self.HOSTS = {} rets = {} for host in self._args.hosts: self.HOSTS[host] = Zabbix( host, self._args.uri_path, self._args.user, self._args.noverify, self._args.cacert, self._args.http, self._args.timeout ) zapi_function = getattr( getattr(getattr(self.HOSTS[host], 'zapi'), self.METHOD_TYPE), self.METHOD) # If the listkeys argument was supplied, we need to override # args.arguments to pull one resource if getattr(self._args, 'listkeys', False): self._args.arguments = ['output=extend', 'limit=1'] # convert the arguments into the required format for the zapi # object. args_real = parse_args(self._args.arguments) # Parse specific cli arguments and update args_real args_to_parse = ['search', 'filter'] for key in args_to_parse: if getattr(self._args, key, None) is not None: args_real[key] = parse_args(getattr(self._args, key)) self.JOBS[host] = (zapi_function, args_real)
def main(): # Parse the JSON arguments config_args = parse_args() # Create the experiment directories _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir) # Reset the default Tensorflow graph tf.reset_default_graph() # Tensorflow specific configuration config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Data loading # The batch size is equal to 1 when testing to simulate the real experiment. data_batch_size = config_args.batch_size if config_args.train_or_test == "train" else 1 data = DataLoader(data_batch_size, config_args.shuffle) print("Loading Data...") config_args.img_height, config_args.img_width, config_args.num_channels, \ config_args.train_data_size, config_args.test_data_size = data.load_data() print("Data loaded\n\n") # Model creation print("Building the model...") model = ShuffleNet(config_args) print("Model is built successfully\n\n") # Parameters visualization show_parameters() # Summarizer creation summarizer = Summarizer(sess, config_args.summary_dir) # Train class trainer = Train(sess, model, data, summarizer) if config_args.train_or_test == 'train': try: # print("FLOPs for batch size = " + str(config_args.batch_size) + "\n") # calculate_flops() print("Training...") trainer.train() print("Training Finished\n\n") except KeyboardInterrupt: trainer.save_model() elif config_args.train_or_test == 'test': # print("FLOPs for single inference \n") # calculate_flops() # This can be 'val' or 'test' or even 'train' according to the needs. print("Testing...") trainer.test('val') print("Testing Finished\n\n") else: raise ValueError("Train or Test options only are allowed")
def process_request(self, request): """Get input, return results.""" results = parse_args(request, PARAMETERS) self.request = results['results'] if len(results['errors']) > 0: self.errors = results['errors'] self.status = 'Error' self._defaults() self._county_limit_data() return self._output()
def conv_temporal_spatial_long_time(): ############################################################################ # TEST 2: CONVERGENCE TEST FOR ADVECTION ############################################################################ mpi_num_procs, omp_num_threads = utils.parse_args() prog = 'advection' dt = 0.0628 vsr = 0 mrg_type = 3 np = mpi_num_procs num_pnts = 8**(math.floor(math.log(np,8)+1)) nt = omp_num_threads # UNIFORM dp_list = [5 , 6 , 7 ]#, 5 , 6 , 7 ] cq_list = [3 , 3 , 3 ]#, 3 , 3 , 3 ] ci_list = [False , False , False ]#, False , False , False] uf_list = [2 , 2 , 2 ]#, 2 , 2 , 2 ] dt_list = [dt , dt/2 , dt/4 ]#, dt , dt/2 , dt/4 ] tn_list = [100 , 200 , 400 ]#, 100 , 200 , 400 ] num_steps = len(dp_list) tl_list = [1e-30 for cnt in range(0,num_steps)] # ADAPTIVE # tl_list = [1e-02, 1e-03, 1e-04, 1e-02 , 1e-03 , 1e-04] # dp_list = [15 , 15 , 15 , 15 , 15 , 15 ] # cq_list = [3 , 3 , 3 , 3 , 3 , 3 ] # ci_list = [True , True , True , False , False , False] # uf_list = [2 , 2 , 2 , 2 , 2 , 2 ] # dt_list = [dt , dt/2 , dt/4 , dt , dt/2 , dt/4 ] # tn_list = [100 , 200 , 400 , 100 , 200 , 400 ] num_steps = len(dp_list) pn_list = [num_pnts for cnt in range(0,num_steps)] np_list = [np for cnt in range(0,num_steps)] nt_list = [nt for cnt in range(0,num_steps)] mg_list = [mrg_type for cnt in range(0,num_steps)] vs_list = [vsr for cnt in range(0,num_steps)] cmd_args = OrderedDict() cmd_args = utils.generate_commands( prog, pn_list, tl_list, dp_list, cq_list, ci_list, uf_list, np_list, nt_list, dt_list, tn_list, vs_list, mg_list) utils.execute_commands(cmd_args, 'temporal-spatial-long-time')
def process_request(self, request): """The main function which processes request and returns result back.""" results = parse_args(request, PARAMETERS) self.request = results['results'] if len(results['errors']) > 0: self.errors = results['errors'] self.status = 'Error' self._defaults() self._data() return self._output()
def test1(): mpi_num_procs, omp_num_threads = utils.parse_args() ############################################################################ # TEST 1: TEMPORAL/SPATIAL ERROR ############################################################################ num_steps = 6 # TREE TOLERANCE tl_factor = 1 tl_init = 1e-10 tl_list = [tl_init*math.pow(tl_factor,float(cnt)) for cnt in range(0, num_steps)] # TREE DEPTH # de_factor = 0 # de_init = 5 # de_list = [de_init+cnt*de_factor for cnt in range(0, num_steps)] de_list = [5,5,5,7,7,7] # TIME RESOLUTION dt_factor = 1 dt_init = 6.28*1e-2 dt_list = [dt_init*math.pow(dt_factor,float(cnt)) for cnt in range(0, num_steps)] # NUM TIME STEPS NUM_ROT = 5 T_END = 6.28*NUM_ROT tn_factor = 1 tn_init = T_END/dt_init tn_list = [tn_init*math.pow(tn_factor,float(cnt)) for cnt in range(0, num_steps)] # CHEBYSHEV DEGREE # q_factor = 1; # q_init = 2; # q_list = [q_init*math.pow(q_factor,float(cnt)) for cnt in range(0, num_steps)] q_list = [3,8,14,3,8,14] # NUM MPI PROCESSES np_list = [mpi_num_procs for cnt in range(0, num_steps)] # NUM OMP THREADS nt_list = [omp_num_threads for cnt in range(0, num_steps)] cmd_args = generate_command_args(tl_list,\ dt_list,\ tn_list,\ de_list,\ q_list, \ np_list,\ nt_list,\ num_steps) utils.execute_commands(cmd_args,'table1-ROT'+str(NUM_ROT))
def scals(): mpi_num_procs, omp_num_threads = utils.parse_args() ############################################################################ # TEST 1: STRONG SCALING ############################################################################ # prog = 'advection' prog = 'advdiff-ss' np_list = [ 1, 2, 4, 8, # 16, # 32, # 64, ] mrg_type = 3; max_np = max(np_list) num_pnts = 8**3#(math.floor(math.log(max_np,8)+1)) num_steps = len(np_list) pn_list = [num_pnts for cnt in range(0,num_steps)] tl_list = [1e-0 for cnt in range(0,num_steps)] dp_list = [15 for cnt in range(0,num_steps)] cq_list = [14 for cnt in range(0,num_steps)] ci_list = [True for cnt in range(0,num_steps)] uf_list = [4 for cnt in range(0,num_steps)] nt_list = [omp_num_threads for cnt in range(0,num_steps)] dt_list = [0.125 for cnt in range(0,num_steps)] tn_list = [1 for cnt in range(0,num_steps)] vs_list = [0 for cnt in range(0,num_steps)] mg_list = [mrg_type for cnt in range(0,num_steps)] cmd_args = OrderedDict() cmd_args = utils.generate_commands( prog, pn_list, tl_list, dp_list, cq_list, ci_list, uf_list, np_list, nt_list, dt_list, tn_list, vs_list, mg_list) utils.execute_commands(cmd_args, 'sscal'+prog)
def main(): """ main function to start the application """ # parse the parameters params = parse_args(sys.argv[1:]) if not params: return # create the object and pass the params required recommend = Recommendation(params.get("input_movies"), params.get("file_path"), params.get("show_count")) # get he recommends movies based on data provided top_movies = recommend.get_recommended_movies() # print the movies on user console show_remommend_movies(top_movies, recommend.get_movies_dict()) return 0
def omp(): ############################################################################ # TEST: OMP SCALING ############################################################################ mpi_num_procs, omp_num_threads = utils.parse_args() # prog = 'advection' prog = 'advdiff-ss' dt = 0.0628 vsr = 0 mrg_type = 3 num_pnts = 8**(math.floor(math.log(mpi_num_procs,8)+1)) num_steps = omp_num_threads nt_list = [cnt+1 for cnt in range(0,num_steps)] np_list = [mpi_num_procs for cnt in range(0,num_steps)] tn_list = [10 for cnt in range(0,num_steps)] pn_list = [num_pnts for cnt in range(0,num_steps)] tl_list = [1e-30 for cnt in range(0,num_steps)] dp_list = [4 for cnt in range(0,num_steps)] mg_list = [mrg_type for cnt in range(0,num_steps)] vs_list = [vsr for cnt in range(0,num_steps)] cq_list = [14 for cnt in range(0,num_steps)] ci_list = [True for cnt in range(0,num_steps)] uf_list = [4 for cnt in range(0,num_steps)] dt_list = [dt for cnt in range(0,num_steps)] cmd_args = OrderedDict() cmd_args = utils.generate_commands( prog, pn_list, tl_list, dp_list, cq_list, ci_list, uf_list, np_list, nt_list, dt_list, tn_list, vs_list, mg_list) utils.execute_commands(cmd_args, 'omp'+prog)
def test2(): ############################################################################ # TEST 2: V depth: [6] C depth: [5, 7, 9] config: regular V, irregular C ############################################################################ mpi_num_procs, omp_num_threads = utils.parse_args() num_steps = 3 mt_factor = 1 mt_init = 1 mt_list = [mt_init+cnt*mt_factor for cnt in range(0, num_steps)] de_factor = 0 de_init = 5 de_list = [de_init+cnt*de_factor for cnt in range(0, num_steps)] dt_factor = 1 dt_init = 0.25 dt_list = [dt_init*math.pow(dt_factor,float(cnt)) for cnt in range(0,num_steps)] tn_factor = 1.0 tn_init = 1 tn_list = [tn_init*math.pow(tn_factor,float(cnt)) for cnt in range(0,num_steps)] test_init = 5 test_factor = 0; test_list = [test_init+cnt*test_factor for cnt in range(0,num_steps)] # NUM MPI PROCESSES np_list = [mpi_num_procs for cnt in range(0, num_steps)] # NUM OMP THREADS nt_list = [omp_num_threads for cnt in range(0, num_steps)] cmd_args = generate_command_args(de_list, dt_list, tn_list, test_list, mt_list, np_list, nt_list, num_steps) utils.execute_commands(cmd_args, 'test2')
def test1(): mpi_num_procs, omp_num_threads = utils.parse_args() num_steps = 8 T_END = 2*math.pi ############################################################################ # TEST 1: TEMPORAL ERROR ############################################################################ tl_fact = 1#0.1 tl_init = 1e-5 tl_list = [tl_init*math.pow(tl_fact,float(cnt)) for cnt in range(0,num_steps)] tn_fact = 2; tn_init = 50 tn_list = [tn_init*math.pow(tn_fact,float(cnt)) for cnt in range(0,num_steps)] dt_fact = 0.5 dt_init = T_END/tn_init dt_list = [dt_init*math.pow(dt_fact,float(cnt)) for cnt in range(0,num_steps)] # NUM MPI PROCESSES np_list = [mpi_num_procs for cnt in range(0, num_steps)] # NUM OMP THREADS nt_list = [omp_num_threads for cnt in range(0, num_steps)] cmd_args = generate_command_args(tl_list,\ dt_list,\ tn_list,\ # de_list,\ # q_list, \ np_list,\ nt_list,\ num_steps) utils.execute_commands(cmd_args, 'table1')
#!/usr/bin/python from utils import params, l from cmd import cmd_runner from ui import * from utils import l, parse_args, setup_logging import sys class deployer: def __init__(self): self.cmd = cmd_runner(ui()) try: parse_args() # provides global configuration repository 'params' except Exception, e: print "Error parsing command line: " + str(e) sys.exit(1) # setup logging try: setup_logging() except Exception, e: print "Error starting logger: %s" % str(e) sys.exit(1) d = deployer() d.cmd.run()
import utils #from utils import preprocess from save_figures import * from apply_model import apply_model_single_input from pad import pad_image import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras import backend as K from losses import * os.environ['FSLOUTPUTTYPE'] = 'NIFTI_GZ' if __name__ == "__main__": ######################## COMMAND LINE ARGUMENTS ######################## results = utils.parse_args("multiseg") num_channels = results.num_channels NUM_GPUS = 1 if results.GPUID == None: os.environ["CUDA_VISIBLE_DEVICES"] = "0" elif results.GPUID == -1: # find maximum number of available GPUs call = "nvidia-smi --list-gpus" pipe = Popen(call, shell=True, stdout=PIPE).stdout available_gpus = pipe.read().decode().splitlines() NUM_GPUS = len(available_gpus) else: os.environ["CUDA_VISIBLE_DEVICES"] = str(results.GPUID) model_filename = results.weights
scores_window.append(score) # save most recent score scores.append(score) # save most recent score avg_av = agent.evaluate_on_fixed_set(fixed_states) average_action_values.append(avg_av) print(f'Episode {i_episode}\tAverage Score: ' f'{round(np.mean(scores_window),4)}\tEpsilon: {round(eps, 4)}\t' f'Average Q value: {round(avg_av, 4)}') if i_episode % conf['save_every'] == 0 and i_episode > 0: print(f'Saving model at iteration: {i_episode}') save_model(conf, agent) env.close() return { 'scores': scores, 'epsilons': epsilons, 'avg_action_values': average_action_values } if __name__ == '__main__': arguments = parse_args() pc = arguments.path_config exp_conf = read_yaml(pc) stats = train(exp_conf) save_scores(exp_conf, stats)
def conv_spatial(): ############################################################################ # TEMPORAL CONVERGENCE TEST FOR ADVECTION ############################################################################ mpi_num_procs, omp_num_threads = utils.parse_args() prog = 'advection' num_steps = 8 ############################## # TREE TOLERANCE ############################## tl_fact = 0.1 tl_init = 1e-1 tl_list = [tl_init*math.pow(tl_fact,float(cnt)) for cnt in range(0,num_steps)] ############################## # TIME RESOLUTION ############################## dt_fact = 1 dt_init = 1e-3 dt_list = [dt_init*math.pow(dt_fact,float(cnt)) for cnt in range(0,num_steps)] T_END = 1.0 tn_fact = 1.0/dt_fact tn_init = 1#T_END/dt_init tn_list = [tn_init*math.pow(tn_fact,float(cnt)) for cnt in range(0,num_steps)] ############################## # TREE DEPTH/POINTS ############################## dp_list = [15 for cnt in range(0,num_steps)] num_pnts = 8**(math.floor(math.log(mpi_num_procs,8)+1)) pn_list = [num_pnts for cnt in range(0,num_steps)] ############################## # PARALLEL ############################## mpi_num_procs = mpi_num_procs np_list = [mpi_num_procs for cnt in range(0,num_steps)] nt = omp_num_threads nt_list = [nt for cnt in range(0,num_steps)] mrg_type = 3 mg_list = [mrg_type for cnt in range(0,num_steps)] ############################## # CHEBYSHEV/CUBIC INTERPOLATION ############################## cq_list = [14 for cnt in range(0, num_steps)] ci_list = [True for cnt in range(0, num_steps)] uf_list = [4 for cnt in range(0, num_steps)] ############################## # VISUALIZATION ############################## vtk_save_rate = 0 vs_list = [vtk_save_rate for cnt in range(0,num_steps)] cmd_args = OrderedDict() cmd_args = utils.generate_commands( prog, pn_list, tl_list, dp_list, cq_list, ci_list, uf_list, np_list, nt_list, dt_list, tn_list, vs_list, mg_list) utils.execute_commands(cmd_args, 'spatial')
from torchvision import transforms import torchvision.datasets as datasets from networks import ilsvrc12_archs as archs from networks import weights_init from netslim import prune, load_pruned_model, update_bn, update_bn_by_names, \ network_slimming, get_norm_layer_names from utils import parse_cifar_args as parse_args from utils import AverageMeter import torch.backends.cudnn as cudnn cudnn.benchmark = True if __name__ == "__main__": # Training settings args = parse_args("ilsvrc12") print(args) os.system('mkdir -p {}'.format(args.output)) device = torch.device('cuda' if args.cuda else 'cpu') if args.seed > 0: torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) # Make data loader kwargs = {'num_workers': 10, 'pin_memory': False} if args.cuda else {} normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) traindir = os.path.join(args.data_path, 'train') train_dataset = datasets.ImageFolder(
def test_valid_parse_args_address(address_fixture, default_port_fixture): """Compare passed address and default port with returned address and port.""" parser = parse_args(address_fixture) assert parser.address == address_fixture[1] and parser.port == default_port_fixture
def test_valid_parse_args_port(default_address_fixture, port_fixture): """Compare default address and passed port with returned address and port.""" parser = parse_args(port_fixture) assert parser.address == default_address_fixture and parser.port == int(port_fixture[1])
import os import torch import torchvision import utils if __name__ == "__main__": args = utils.parse_args() test = utils.load_test(args) model = getattr(torchvision.models, test["model"])() model.eval() example = torch.randn(1, 3, 64, 64) script_model = torch.jit.trace(model, example) script_model.save(os.environ["MODEL"])
import os import pickle import tensorflow as tf from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler import numpy as np import pandas as pd from scipy.special import softmax from tqdm import tqdm from utils import wln_loss, regio_acc, lr_multiply_ratio, parse_args args, dataloader, classifier = parse_args(cross_val=True) reactivity_data = pd.read_csv(args.data_path, index_col=0) if args.model == 'ml_QM_GNN': from ml_QM_GNN.graph_utils.mol_graph import initialize_qm_descriptors from predict_desc.predict_desc import predict_desc, reaction_to_reactants from predict_desc.post_process import min_max_normalize qmdf = predict_desc(args, normalize=False) else: if args.model == 'QM_GNN': from QM_GNN.graph_utils.mol_graph import initialize_qm_descriptors initialize_qm_descriptors(path=args.desc_path) df = pd.read_csv(args.data_path, index_col=0) df = df.sample(frac=1, random_state=1) # split df into k_fold groups k_fold_arange = np.linspace(0, len(df), args.k_fold+1).astype(int)
epoch) + "_" + str(bs) + "_" + str( hidden_dims) + "_" + str(lr) + "_" + str( wd) + "_" + str(loss_weights) + "_" + str( do) sys.stdout = open( os.path.join(LOG_FOLDER, "MAE_" + PATH + ".out"), "w") CV(mod1, mod2, encoder1, encoder2, x_train, 5, in_dims, d_dims, hidden_dims, lr, wd, bs, epoch, loss_fns, loss_weights) p_time = time.time() model = train_MAE(mod1, mod2, in_dims, d_dims, encoder1, encoder2, x_train, hidden_dims, lr, wd, bs, epoch, loss_fns, loss_weights, True, PATH) a_time = time.time() print(f'Training time: {a_time-p_time}') testloss = evaluate_MAE(model, x_test, bs, loss_fns, loss_weights) print(f"Testloss: {testloss}") gc.collect() sys.stdout.close() sys.stdout = stdOrigin if (__name__ == '__main__'): print(sys.argv) parameters = parse_args(sys.argv) main(*parameters)
import math import argparse import model import utils import data import os from utils import Option opt = Option('./config.json') utils.init() formatter = argparse.ArgumentDefaultsHelpFormatter parser = argparse.ArgumentParser(formatter_class=formatter) args, flags = utils.parse_args(opt, parser) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) tf.compat.v1.set_random_seed(args['random_seed']) def rampup(epoch): if epoch < args['rampup_length']: p = max(0.0, float(epoch)) / float(args['rampup_length']) p = 1.0 - p return math.exp(-p * p * 5.0) else: return 1.0 def rampdown(epoch): if epoch >= (args['n_epochs'] - args['rampdown_length']): ep = (epoch - (args['n_epochs'] - args['rampdown_length'])) * 0.5
return Context(args=args, trader=None) if __name__ == '__main__': commonParser = argparse.ArgumentParser(add_help=False) commonParser.add_argument('--csv', type=str, help='read csv file') commonParser.add_argument('--reverse', action=argparse.BooleanOptionalAction, default=False, help='reverse csv data') commonParser.add_argument('--csv-delimiter', default=',', type=str, help='csv delimiter', dest='csvDelimiter') strategyParser = argparse.ArgumentParser(description='Start back test.', parents=[commonParser]) strategyParser.add_argument('--strategy', dest='strategy', type=str, nargs='?', help='choose a strategy to test') args, unknown = strategyParser.parse_known_args() strategy_args = {parse_args(k): v for k, v in zip(unknown[::2], unknown[1::2])} logger.info(f'Test [{args.strategy}] strategy with args:') print_json(strategy_args) strategy = __import__(f'strategy.{args.strategy}', fromlist=True) context = build_context(strategy_args) instance = getattr(strategy, 'create')(context) cerebro = bt.Cerebro(stdstats=False) cerebro.addstrategy(Proxy, args={ 'strategy': instance }) datapath = (args.csv) dataframe = pd.read_csv(
from torch.utils.data import Dataset import main, utils import torch.optim as optim import sys import numpy as np import os.path as osp from datetime import date import train import pdb device = 'cuda' if torch.cuda.is_available() else 'cpu' if __name__ == '__main__': opt = utils.parse_args() if True: if opt.glove: queryset = utils.load_glove_data('query').to(utils.device) neighbors = utils.load_glove_data('answers').to(utils.device) elif opt.sift: queryset = utils.load_sift_data('query').to(utils.device) neighbors = utils.load_sift_data('answers').to(utils.device) else: queryset = utils.load_data('query').to(utils.device) neighbors = utils.load_data('answers').to(utils.device) else: queryset = utils.load_data('train').to(utils.device) dist = utils.l2_dist(queryset) dist += 2 * torch.max(dist).item() * torch.eye(
from convert import trajectory_ik, trajectory_fk, timing_report, reaching_report from approxik import ApproxInvKin, ExactInvKin def line1(P, turns=5, max_radius=1.0, height=0.8): n_steps = P.shape[0] x = np.linspace(-np.pi * turns, np.pi, n_steps) r = np.linspace(0, max_radius, n_steps) P[:, 0] = np.sin(x) * r P[:, 1] = np.cos(x) * r P[:, 2] = height P[:, 3] = 1.0 if __name__ == "__main__": filename, base_link, ee_link = parse_args() aik = ApproxInvKin(filename, base_link, ee_link, 1.0, 0.001, verbose=0) eik = ExactInvKin(filename, base_link, ee_link, 1e-4, 200, verbose=0) P = np.zeros((1000, 7)) line1(P, max_radius=0.6) Qa, timings = trajectory_ik(P, aik) reaching_report(P, Qa, aik, label="Approximate IK") timing_report(timings, "Approximate IK") Pa = trajectory_fk(Qa, aik) Qe, timings, reachable = trajectory_ik(P, eik, return_reachable=True) timing_report(timings, "Exact IK") reaching_report(P, Qe, eik, label="Exact IK") Pe = trajectory_fk(Qe, eik)
""" Compete with best model """ import os from go_game import GoGame from NNet import NetTrainer from play import compete_random_greedy from utils import parse_args if __name__ == "__main__": ARGS = parse_args() GAME = GoGame(13, 7.5) OLD_WIN_COUNT, NEW_WIN_COUNT, black_win, white_win = compete_random_greedy( GAME, ARGS) # if not os.path.exists('../compete_results'): # os.makedirs('../compete_results') print('Random {} Greedy {}'.format(OLD_WIN_COUNT, NEW_WIN_COUNT), flush=True) # with open('../compete_results/' + str(ARGS.thread_num) + '.txt', 'w') as file: # file.write(str(OLD_WIN_COUNT) + ' ' + str(NEW_WIN_COUNT)+' '+ str(black_win) +' '+ str(white_win))
def main(): args = parse_args() # specifies the path where the biobert or clinical bert model is saved if args.bert_model == 'biobert' or args.bert_model == 'clinical_bert': args.bert_model = args.model_loc print(f"Using bert model: {args.bert_model}") device = torch.device(args.device if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() logger.info(f"device: {device} n_gpu: {n_gpu}") random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError( "At least one of `do_train` or `do_eval` must be True.") if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train: raise ValueError( "Output directory ({}) already exists and is not empty.".format( args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) processor = N2c2ClsProcessor(args.fold_id) num_labels = 13 label_list = processor.get_labels() tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) print('TRAIN') train = processor.get_train_examples(args.data_dir) print([(train[i].text_a, train[i].text_b, train[i].label) for i in range(3)]) print('DEV') dev = processor.get_dev_examples(args.data_dir) print([(dev[i].text_a, dev[i].text_b, dev[i].label) for i in range(3)]) print('TEST') test = processor.get_test_examples(args.data_dir) print([(test[i].text_a, test[i].text_b, test[i].label) for i in range(3)]) train_examples = None num_train_optimization_steps = None if args.do_train: train_examples = processor.get_train_examples(args.data_dir) num_train_optimization_steps = int( len(train_examples) / args.train_batch_size) * args.num_train_epochs # Prepare model cache_dir = args.cache_dir if args.cache_dir else PYTORCH_PRETRAINED_BERT_CACHE model = BertForSequenceClassification.from_pretrained( args.bert_model, cache_dir=cache_dir, num_labels=num_labels) model.to(device) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) global_step = 0 nb_tr_steps = 0 tr_loss = 0 if args.do_train: train_features = convert_examples_to_features(train_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss = model(input_ids, segment_ids, input_mask, label_ids) loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 optimizer.step() optimizer.zero_grad() global_step += 1 # Save a trained model and the associated configuration model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) torch.save(model_to_save.state_dict(), output_model_file) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) with open(output_config_file, 'w') as f: f.write(model_to_save.config.to_json_string()) # Load a trained model and config that you have fine-tuned config = BertConfig(output_config_file) model = BertForSequenceClassification(config, num_labels=num_labels) model.load_state_dict(torch.load(output_model_file)) else: model = BertForSequenceClassification.from_pretrained( args.bert_model, num_labels=num_labels) model.to(device) if args.do_eval: eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 pred = [] for input_ids, input_mask, segment_ids, label_ids in tqdm( eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids) logits = model(input_ids, segment_ids, input_mask) logits = torch.softmax(logits, 1) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() tmp_eval_accuracy = accuracy(logits, label_ids) pred += logits.tolist() eval_loss += tmp_eval_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples loss = tr_loss / nb_tr_steps if args.do_train else None pred = {f.guid: p for f, p in zip(eval_features, pred)} result = { 'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'global_step': global_step, 'loss': loss } output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) output_pred_file = os.path.join(args.output_dir, "pred_results.txt") with open(output_pred_file, 'w') as writer: logger.info("***** Writing Eval predictions *****") for id, p in pred.items(): writer.write(f"{id}:{p}\n") if args.do_test and (args.local_rank == -1 or torch.distributed.get_rank() == 0): test_examples = processor.get_test_examples(args.data_dir) test_features = convert_examples_to_features(test_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running testing *****") logger.info(" Num examples = %d", len(test_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size) model.eval() test_loss, test_accuracy = 0, 0 nb_test_steps, nb_test_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in tqdm( test_dataloader, desc="Testing"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): tmp_test_loss = model(input_ids, segment_ids, input_mask, label_ids) logits = model(input_ids, segment_ids, input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() tmp_test_accuracy = accuracy(logits, label_ids) test_loss += tmp_test_loss.mean().item() test_accuracy += tmp_test_accuracy nb_test_examples += input_ids.size(0) nb_test_steps += 1 test_loss = test_loss / nb_test_steps test_accuracy = test_accuracy / nb_test_examples loss = tr_loss / nb_tr_steps if args.do_train else None result = { 'test_loss': test_loss, 'test_accuracy': test_accuracy, 'global_step': global_step, 'loss': loss } output_test_file = os.path.join(args.output_dir, "test_results.txt") with open(output_test_file, "w") as writer: logger.info("***** Test results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key])))
def main(): args = parse_args() course_link = args.course_url[0] path = args.path overwrite = args.overwrite regexs = [ r"(?:https?://)study.163.com/course/introduction/(?P<courseid>\d+)\.htm", r"(?:https?://)study.163.com/course/courseMain.htm\?courseId=(?P<courseid>\d+)", r"(?:https?://)study.163.com/course/introduction.htm\?courseId=(?P<courseid>\d+)", ] for regex in regexs: m = re.match(regex, course_link) if m is not None: break if m is None: print("The URL provided is not valid for study.163.com") sys.exit(0) path = os.path.join(path, m.group("courseid")) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate, sdch", "Accept-Language": "zh-CN,zh;q=0.8,en;q=0.6,zh-TW;q=0.4", "Connection": "keep-alive", "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36", "X-Requested-With": "ShockwaveFlash/16.0.0.235", } post_data = { "callCount": 1, "scriptSessionId": "${scriptSessionId}190", "c0-scriptName": "PlanNewBean", "c0-methodName": "getPlanCourseDetail", "c0-id": 0, "c0-param0": "string:" + m.group("courseid"), "c0-param1": "number:0", "c0-param2": "null:null", "batchId": 434820, # arbitrarily } course_detail_dwr_url = "http://study.163.com/dwr/call/plaincall/PlanNewBean.getPlanCourseDetail.dwr" session = requests.Session() session.headers.update(headers) r = session.post(course_detail_dwr_url, data=post_data) if r.status_code is not 200: print("Failed to get .dwr file.") sys.exit(0) print("Parsing...", end="") syllabus = parse_syllabus_study163(session, r.content) if syllabus: print("Done.") else: print("Failed. No course content on the page.") sys.exit(0) download_syllabus_study163(session, syllabus, path, overwrite)
elif params.n_shot == 5: params.stop_epoch = 400 else: params.stop_epoch = 600 # default base_datamgr = SimpleDataManager(image_size, batch_size=16) base_loader = base_datamgr.get_data_loader(base_file, aug=params.train_aug) val_datamgr = SimpleDataManager(image_size, batch_size=64) val_loader = val_datamgr.get_data_loader(val_file, aug=False) return base_loader, val_loader if __name__ == '__main__': np.random.seed(10) params = parse_args('train') params.checkpoint_dir = '%s/checkpoints/%s/%s_%s' % ( configs.save_dir, params.dataset, params.model, params.method) if params.train_aug: params.checkpoint_dir += '_aug' if not params.method in ['baseline', 'baseline++']: params.checkpoint_dir += '_%dway_%dshot' % (params.train_n_way, params.n_shot) if not os.path.isdir(params.checkpoint_dir): os.makedirs(params.checkpoint_dir) base_loader, val_loader = get_loader(params) model = get_model(params) model = model.cuda()
def transform(src: Path, dst: PathLike): # Import the Universal Sentence Encoder's TF Hub module embed = hub.Module(MODULE_URL) tf.logging.set_verbosity(tf.logging.ERROR) logging.debug('Transforming') test_corpus = read_corpus(src) with tf.Session() as session: session.run( [tf.global_variables_initializer(), tf.tables_initializer()]) x = session.run(embed(test_corpus)) logging.debug('Save to %s', dst) np.savez(dst, x=x) def read_universal_sentence(filename): npzfile = np.load(filename) return npzfile['x'] if __name__ == '__main__': argv = parse_args(__doc__) # pick_device() output = to_path(argv['--output']) if not argv['--skip'] or not output.exists(): transform(to_path(argv['--input']), output)
get_logger, write_lines, read_lines, ) # TODO only do parts of pipeline opts = parse_args( arg('-name', default='fr-clean'), arg('-f', '--file', default='train/french_clean'), # if you want 18th word do 17 arg('-i', '--start', type=int, default=76), arg('-j', '--stop', type=int), arg('-q', '--query', nargs='*'), arg('-s', '--src', default='fr'), arg('-t', '--target', default='en'), arg('-n', '--n-img', type=int, default=20), # pipeline arg('-is', '--sch', action='store_true'), arg('-rs', '--rsch', action='store_true'), arg('-pred', action='store_true'), # use saved arg('-load-urls'), arg('-load-preds'), ) name = opts.name + '__' if is_(opts.name) else '' RESULT_PREFIX = osp.join('reverse-img-final-preds', '%s_to_%s' % (opts.src, opts.target), name + time_stamp()) mkdir_p(RESULT_PREFIX)
def test_valid_parse_args(address_fixture, port_fixture): """Compare passed address and port with returned address and port.""" parser = parse_args((*address_fixture, *port_fixture)) assert parser.address == address_fixture[1] and parser.port == int(port_fixture[1])
def main(): args = parse_args() if args.username is None: print ('No username specified.') sys.exit(1) if args.password is None: print ('No password specified.') sys.exit(1) user_email = args.username user_pswd = args.password course_link = args.course_url[0] path = args.path overwrite = args.overwrite regex = r'(?:https?://)(?P<site>[^/]+)/(?P<baseurl>[^/]+)/(?P<coursename>[^/]+)/?' m = re.match(regex, args.course_url[0]) if m is None: print ('The URL provided is not valid for icourse163.') sys.exit(0) md = md5.new() md.update(user_pswd) encryptedpswd = md.hexdigest() if m.group('site') in ['www.icourse163.org']: login_data = { 'product': 'imooc', 'url': 'http://www.icourse163.org/mooc.htm?#/index', 'savelogin': 1, 'domains': 'icourse163.org', 'type': 0, 'append': 1, 'username': user_email, 'password': encryptedpswd } login_success_flag = '正在登录,请稍等...' web_host = 'www.icourse163.org' regex_loc = 'window.location.replace\(\"(http:\/\/reg\.icourse163\.org\/next\.jsp.+)\"\)' elif m.group('site') in [ 'mooc.study.163.com']: login_data = { 'product': 'study', 'url': 'http://study.163.com?from=study', 'savelogin': 1, 'domains': '163.com', 'type': 0, 'append': 1, 'username': user_email, 'password': encryptedpswd } login_success_flag = '登录成功,正在跳转' web_host = 'mooc.study.163.com' regex_loc = 'window.location.replace\(\"(http:\/\/study\.163\.com\?from=study)\"\)' else: print ('The URL provided is not valid for icourse163.') sys.exit(0) path = os.path.join(path, clean_filename(m.group('coursename'))) login_url = 'https://reg.163.com/logins.jsp' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6,zh-TW;q=0.4', 'Connection': 'keep-alive', } session = requests.Session() session.headers.update(headers) r1 = session.post(login_url, data=login_data) success = re.search(login_success_flag, r1.content) if not success: print ('Fail to login.') exit(2) else: print ('Login done...') se = re.search(regex_loc, r1.content) r = session.get(se.group(1), allow_redirects=True, cookies = {'NTES_PASSPORT':session.cookies['NTES_PASSPORT']}) # get course id, it's in cid.group(1) r2 = session.get(course_link) cid = re.search(r'window\.termDto = { id:([0-9]+),', r2.content) if cid is None: cid = re.search(r'termId : \"([0-9]+)\",', r2.content) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36', 'Accept': '*/*' , 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6,zh-TW;q=0.4', 'Connection': 'keep-alive', 'Content-Type': 'text/plain', 'Cookie': 'STUDY_SESS=%s; '% session.cookies['STUDY_SESS'], 'Host': web_host, } session.headers.update(headers) params = { 'callCount':1, 'scriptSessionId':'${scriptSessionId}190', 'httpSessionId':'e8890caec7fe435d944c0f318b932719', 'c0-scriptName':'CourseBean', 'c0-id': 0, 'c0-methodName':'getLastLearnedMocTermDto', 'c0-param0':'number:' + cid.group(1), 'batchId':434820, #arbitrarily } getcourse_url = 'http://www.icourse163.org/dwr/call/plaincall/CourseBean.getLastLearnedMocTermDto.dwr' r3 = session.post(getcourse_url,data = params) print ('Parsing...', end="") syllabus = parse_syllabus_icourse163(session, r3.content) if syllabus: print ('Done.') else: print ('Failed. No course content on the page.') sys.exit(0) print ('Save files to %s' % path) download_syllabus_icourse163(session, syllabus, path)
def run(self, argv): """Make API self.classes Parse Swagger JSON files and make API classes. Uses: copyright_notice.bit proper_object_def.proto proper_object_method_def.proto """ args = parse_args(argv) methods_to_move = ['get', 'gets'] asterisk_class = None if ((args['dir'] is None or args['dir'] == '') and (args['resource'] is None or args['resource'] == '')) \ or args['lang'] is None or args['lang'] == '': print "Usage: ./generate_library --lang=language ", \ "[--dir=/path/to/resources/ | ", \ "--resource=", \ "http://localhost:8088/stasis/api-docs/resources.json] " return 1 self.lang_tools = __import__(args['lang']) def remove_moved(method): """Remove get* methods from this class and add to Asterisk""" if method.method_name in methods_to_move: # Add these to the Asterisk class instead asterisk_class.methods.append(method) return False else: return True for class_ in self.classes: if class_.class_name == "Asterisk": asterisk_class = class_ class_.methods[:] = [m for m in class_.methods if remove_moved(m)] template_copyright = get_file_content( '%s/templates/copyright.proto' % (args['lang']) ) + '\n' if args['dir']: self.get_resources_from_dir(args['dir'], args['lang']) elif args['resource']: self.get_resources_from_url(args['resource'], args['lang']) if len(self.classes) == 0: print "No resources found. Are you using Asterisk 12 or later?" return 1 self.classes = sorted(self.classes, cmp=sort_asterisk_first) for class_ in self.classes: method_texts = [] print "Generating class %s" % (class_.class_name) class_def = class_.construct_file_contents() for method in class_.methods: if method.method_name in methods_to_move: if class_.class_name != 'Asterisk': continue else: # Rename from get/gets to get_channel, get_channels method.method_name = re.sub('(s*)$', r'_%s\1' % (method.file_name), method.method_name) method.file_name = 'asterisk' print " method %s.%s" \ % (class_.class_name, method.method_name) filebit = method.construct_file_contents() method_texts.append(filebit) methods_blob = '\n\n'.join(method_texts) if methods_blob != '': # Handle different number of newlines if we have no methods # to add. methods_blob = '\n' + methods_blob class_def = re.sub('\{CLASS_METHODS\}', methods_blob, class_def) file_contents = '\n\n'.join([template_copyright, class_def]) file_contents = self.lang_tools.wrap(file_contents) write_file('%s/lib/%s.%s' % (args['lang'], class_.file_name, self.lang_tools.FILE_EXTENSION), file_contents) license_content = get_file_content('LICENSE') write_file('%s/lib/LICENSE' % args['lang'], license_content)
np.array(response_list_2d[img3_idx]).reshape(1, -1)) print("Input Image Num: ", index_list[img1_idx], " Output image nums: ", index_list[closest_to_img1[1][0, 0]], index_list[closest_to_img1[1][0, 1]], index_list[closest_to_img1[1][0, 2]], index_list[closest_to_img1[1][0, 3]]) print("Input Image Num: ", index_list[img2_idx], " Output image nums: ", index_list[closest_to_img2[1][0, 0]], index_list[closest_to_img2[1][0, 1]], index_list[closest_to_img2[1][0, 2]], index_list[closest_to_img2[1][0, 3]]) print("Input Image Num: ", index_list[img3_idx], " Output image nums: ", index_list[closest_to_img3[1][0, 0]], index_list[closest_to_img3[1][0, 1]], index_list[closest_to_img3[1][0, 2]], index_list[closest_to_img3[1][0, 3]]) # print(closest_to_img1) # VOCDataset.get_class_name(closest_to_img1[0]) if __name__ == "__main__": args, device = utils.parse_args() main()
# Restore confusion matrix metrics['confusion matrix'] = cm @staticmethod def _get_train_summary_op(graph, tag_prefix='train/'): loss = graph.get_tensor_by_name(LOSS_TENSOR) loss_summary = tf.summary.scalar(tag_prefix + 'loss', loss) return loss_summary if __name__ == '__main__': # Suppress most console output tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) mode, args = parse_args(sys.argv[1:]) # Create full paths meta_file = os.path.join(args.model_dir, args.meta_name) ckpt = os.path.join(args.model_dir, args.ckpt_name) # Create runner if mode == 'train': augmentation_kwargs = dict( max_bbox_jitter=args.max_bbox_jitter, max_rotation=args.max_rotation, max_shear=args.max_shear, max_pixel_shift=args.max_pixel_shift, max_pixel_scale_change=args.max_pixel_scale_change) else: augmentation_kwargs = {}
print kwargs # Apply the RNN to the inputs h = rnn.apply(low_memory=True, **kwargs) fork.initialize() rnn.weights_init = initialization.Orthogonal() rnn.biases_init = initialization.Constant(0) rnn.initialize() f_h = theano.function([x], h) return f_pre_rnn, f_h if __name__ == "__main__": args = parse_args() dataset = args.dataset mini_batch_size = 2 time_length = 10 # Prepare data train_stream, valid_stream, vocab_size = get_minibatch_char( dataset, mini_batch_size, time_length, args.tot_num_char) f_pre_rnn, f_h = build_fork_lookup(vocab_size, time_length, args) data = next(train_stream.get_epoch_iterator())[1] print(data) pre_rnn = f_pre_rnn(data)
def conv_temporal_spatial_long_time(): ############################################################################ # TEST 2: CONVERGENCE TEST FOR ADVECTION-DIFFUSION SOLVER ############################################################################ mpi_num_procs, omp_num_threads = utils.parse_args() # prog = 'advdiff-ss' # prog = 'advdiff-ss-tv' prog = 'advdiff-ss-tv-extrap' dt = 0.0628 vtk_save_rate = 0 mrg_type = 3 np = mpi_num_procs num_pnts = 8**(math.floor(math.log(np,8)+1)) nt = omp_num_threads # UNIFORM # dp_list = [5 , 6 , 7 ] # cq_list = [3 , 3 , 3 ] # ci_list = [True , True , True ] # uf_list = [2 , 2 , 2 ] # dt_list = [dt , dt/2 , dt/4 ] # tn_list = [100 , 200 , 400 ] # num_steps = len(dp_list) # tl_list = [1e-30 for cnt in range(0,num_steps)] # ADAPTIVE # LOW ORDER tl_list = [1e-02, 1e-03, 1e-04 ] dp_list = [15 , 15 , 15 ] cq_list = [3 , 3 , 3 ] ci_list = [True , True , True ] uf_list = [2 , 2 , 2 ] dt_list = [dt , dt/2 , dt/3 ] tn_list = [100 , 200 , 300 ] # HIGH ORDER # tl_list = [1e-03, 1e-04, 1e-05, 1e-6 ] # dp_list = [15 , 15 , 15 , 15 ] # cq_list = [14 , 14 , 14 , 14 ] # ci_list = [True , True , True , True ] # uf_list = [2 , 2 , 2 , 2 ] # dt_list = [dt/4 , dt/8 , dt/16, dt/32 ] # tn_list = [400 , 800 , 1600 , 3200 ] num_steps = len(dp_list) pn_list = [num_pnts for cnt in range(0,num_steps)] np_list = [np for cnt in range(0,num_steps)] nt_list = [nt for cnt in range(0,num_steps)] mg_list = [mrg_type for cnt in range(0,num_steps)] vs_list = [vtk_save_rate for cnt in range(0,num_steps)] tt_list = [11 for cnt in range(0,num_steps)] cmd_args = OrderedDict() cmd_args = utils.generate_commands( prog, pn_list, tl_list, dp_list, cq_list, ci_list, uf_list, np_list, nt_list, dt_list, tn_list, vs_list, mg_list, tt_list) utils.execute_commands(cmd_args, 'temporal-spatial-long-time')
return Link_Pred_Tasker(args, dataset) elif args.task == 'edge_cls': return Edge_Cls_Tasker(args, dataset) elif args.task == 'node_cls': return Node_Cls_Tasker(args, dataset) def build_classifier(args, tasker): if 'node_cls' == args.task: mult = 1 else: mult = 2 return Classifier(args, in_features=args.gcn_out_feats * mult, out_features=tasker.num_classes).to(args.device) if __name__ == '__main__': parser = u.create_parser() args = u.parse_args(parser) args.device = 'cuda' dataset = build_dataset(args) tasker = build_tasker(args, dataset) splitter = splitter(args, tasker) gcn = EGNNC(args.feats_per_node, args.hidden_feats, args.gcn_out_feats, args.num_hist_steps, tasker.data.num_nodes).to(args.device) classifier = build_classifier(args, tasker) loss = ce.Cross_Entropy(args, dataset).to('cuda') trainer = Trainer(args, splitter=splitter,
print >>f_index, '\t"%s" : ' % word print >>f_index, json.dumps(index, sort_keys=True, indent=2, ensure_ascii=False, encoding='utf-8'), ',' else: print >>f_index, u'%s\t%s' % (word, u' '.join( u'%s,%d,%d' % (k,v[0],v[1]) if k in ["ids","lens"] else u'%s,%s' % (k,v) for k,v in index.items())) if use_json: print >>f_index, '\n\n"" : [] }\n' with codecs.open('error.txt', 'a+', encoding='utf-8') as f_err: print >>f_err, "\n\n%d, %.3f sec" % (quantity, time.time() - start_time) return import utils import fib_archive import s9_archive if __name__ == '__main__': args = utils.parse_args() if args.fib: archiver = fib_archive.FibonacciArchiver(args.fib) elif args.s9: archiver = s9_archive.Simple9Archiver() reshape(args.dat_name, args.ndx_name, args.bin_name, args.len_name, archiver=archiver, use_hashes=args.use_hashes)
def decode_instr(self, args): self.src_op, self.dest_op = utils.parse_args(args)
def generate_command_args(max_depth, mpi_num_procs, omp_num_threads): EXEC = os.path.join(utils.TBSLAS_EXAMPLES_BIN_DIR, "advdiff-ss") # generate a dictionary data type of commands cmd_args = OrderedDict() cmd_id = 1 ARGS = ['-N' , '2048', \ '-tol' , '1e-5', \ '-d' , str(max_depth), \ '-dt' , '0.125', \ '-tn' , '5', \ '-test', str(4), \ '-omp' , str(omp_num_threads), \ ] cmd_args[cmd_id] = utils.determine_command_prefix(mpi_num_procs) + [EXEC] + ARGS return cmd_args ################################################################################ # MAIN ################################################################################ if __name__ == '__main__': mpi_num_procs, omp_num_threads = utils.parse_args() max_depth = 7 ############################################################################ # TEST 1: TEMPORAL CONVERGENCE ############################################################################ cmd_args = generate_command_args(max_depth, mpi_num_procs, omp_num_threads) utils.execute_commands(cmd_args, 'vis-advdiff')
mw = MainWindow(width, height, Screen) ep.mw = mw # GTK mumbo-jumbo to show the widget in a window and quit when it's closed def run(): mw.run() if __name__ == "__main__": usage = "pythone tileset_editor.py [-h] [--reexport] [--project <path>] [--out <path>]" if len(sys.argv) > 1: description = {"-h": {"arglen": 0, "arg": None, "present": False}, "--reexport": {"arglen": 0, "arg": None, "present": False}, "--project": {"arglen": 1, "arg": None, "present": False}, "--out": {"arglen": 1, "arg": None, "present": False}} if utils.parse_args(sys.argv, description) == True: if description["-h"]["present"]: print usage exit(0) elif description["--reexport"]["present"]: if description["--project"]["present"] and description["--out"]["present"]: project_path = description["--project"]["arg"] out_path = description["--out"]["arg"] print "Loading project from:", project_path project.load(project_path) print "Exporting project to:", out_path state.export(out_path) exit(0) run()
def test_parse_args__valid(self): """with valid args.""" dummy_request = dummy({'price': 1000, 'downpayment': 10}) result = utils.parse_args(dummy_request, params) self.assertTrue('results' in result) self.assertTrue(result['results']['price'], 1000)
def test_valid_parse_args_defaults(default_address_fixture, default_port_fixture, address_fixture, port_fixture): """Compare passed and returned address and port with default address and port.""" parser = parse_args((*address_fixture, *port_fixture)) assert parser.address != default_address_fixture and parser.port != default_port_fixture
parser.add_str("data-format", default="json", choices=("woz", "json", "dstc"), help="Data format of the data to be loaded.") parser.add_pth("glad-dir", is_dir=True, must_exist=True, default=(pathlib.Path(__file__).parent .joinpath("../dst/glad").absolute()), help="Directory to an existing glad codebase.") parser.add_pth("save-dir", is_dir=True, default="out-glad", help="Directory for saving output files.") parser.add_int("max-epochs", min_bound=1, default=50, help="Maximum epochs to train models.") parser.add_int("batch-size", min_bound=1, default=50, help="Mini-batch size during stochastic gd.") parser.add_flt("emb-dropout", default=0.2, help="Embedding dropout.") parser.add_flt("local-dropout", default=0.2, help="Local dropout.") parser.add_flt("global-dropout", default=0.2, help="Global dropout.") parser.add_str("early-stop-criterion", default="joint_goal", choices=("joint_goal", "turn_inform", "turn_request", "hmean")) parser.add_int("seed", help="Random seed.") parser.add_int("gpu", help="Index of specific GPU device to use.") return parser if __name__ == "__main__": main(utils.parse_args(create_parser()))
trn_dataset.tokenizer, clean=False) del model # calc training stats fold_best_metric_mean = np.mean(fold_best_metrics) fold_best_metric_std = np.std(fold_best_metrics) fold_stats = f'{EXP_ID} : {fold_best_metric_mean:.4f} +- {fold_best_metric_std:.4f}' sel_log(fold_stats, logger) send_line_notification(fold_stats) fold_best_metrics_raws_mean = np.mean(fold_best_metrics_raws, axis=0) fold_raw_stats = '' for metric_stats_raw in fold_best_metrics_raws_mean: fold_raw_stats += f'{float(metric_stats_raw):.4f},' sel_log(fold_raw_stats, logger) send_line_notification(fold_raw_stats) sel_log('now saving best checkpoints...', logger) if __name__ == '__main__': args = parse_args(None) log_file = f'{EXP_ID}.log' logger = getLogger(__name__) logger = logInit(logger, f'{MNT_DIR}/logs/', log_file) sel_log(f'args: {sorted(vars(args).items())}', logger) # send_line_notification(f' ------------- start {EXP_ID} ------------- ') main(args, logger)
self.assert_response_time(res, 2) self.assertEqual(res.status_code, 200) def test_get_by_valid_id(self): id = f"{osu_id}-{term_id}" res = utils.get_by_id(id) self.assertIn('data', res.json()) self.assertIsInstance(res.json()['data'], dict) self.assert_response_time(res, 3) self.assertEqual(res.status_code, 200) def test_get_by_invalid_id(self): id = 'invalid_id' res = utils.get_by_id(id) self.assert_response_time(res, 2) self.assertEqual(res.status_code, 404) if __name__ == '__main__': args, argv = utils.parse_args() config_data = utils.load_config(args.config) logging.basicConfig(level=logging.DEBUG if args.debug else logging.WARNING) osu_id = config_data['staff_fee_privilege_osu_id'] term_id = config_data['staff_fee_privilege_term_id'] sys.argv[:] = argv unittest.main()
import wandb import torch import torch.nn.functional as F from torch.nn import CrossEntropyLoss from models import dispatch_model from utils import parse_args, save_model from dataset import get_train_dataloader, get_test_dataloader from training import dispatch_optimizer, get_lr, dispatch_lr_scheduler from metrics import compute_accuracy save_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'models') embeddings = [] if __name__ == '__main__': args = parse_args() print(args) use_cuda = not args.use_cpu and torch.cuda.is_available() device = 'cuda' if use_cuda else 'cpu' bs = args.train_batch_size best_acc = 0 train_dataloader = get_train_dataloader(args.data_dir, args.train_batch_size, embedding=args.embedding) test_dataloader = get_test_dataloader(args.data_dir, args.train_batch_size, embedding=args.embedding) # metrics_train_dataloader = None # et_train_dataloader(args.data_dir, eval_batch, dataset_version, shuffle=False, use_transforms=False)
def main(): args = parse_args() if args.username is None: print('No username specified.') sys.exit(1) if args.password is None: print('No password specified.') sys.exit(1) user_email = args.username user_pswd = args.password course_link = args.course_url[0] path = args.path overwrite = args.overwrite regex = r'(?:https?://)(?P<site>[^/]+)/(?P<baseurl>[^/]+)/(?P<coursename>[^/]+)/?' m = re.match(regex, args.course_url[0]) if m is None: print('The URL provided is not valid for icourse163.') sys.exit(0) md = md5.new() md.update(user_pswd) encryptedpswd = md.hexdigest() if m.group('site') in ['www.icourse163.org']: login_data = { 'product': 'imooc', 'url': 'http://www.icourse163.org/mooc.htm?#/index', 'savelogin': 1, 'domains': 'icourse163.org', 'type': 0, 'append': 1, 'username': user_email, 'password': encryptedpswd } login_success_flag = '正在登录,请稍等...' web_host = 'www.icourse163.org' regex_loc = 'window.location.replace\(\"(http:\/\/reg\.icourse163\.org\/next\.jsp.+)\"\)' elif m.group('site') in ['mooc.study.163.com']: login_data = { 'product': 'study', 'url': 'http://study.163.com?from=study', 'savelogin': 1, 'domains': '163.com', 'type': 0, 'append': 1, 'username': user_email, 'password': encryptedpswd } login_success_flag = '登录成功,正在跳转' web_host = 'mooc.study.163.com' regex_loc = 'window.location.replace\(\"(http:\/\/study\.163\.com\?from=study)\"\)' else: print('The URL provided is not valid for icourse163.') sys.exit(0) path = os.path.join(path, clean_filename(m.group('coursename'))) login_url = 'https://reg.163.com/logins.jsp' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6,zh-TW;q=0.4', 'Connection': 'keep-alive', } session = requests.Session() session.headers.update(headers) r1 = session.post(login_url, data=login_data) success = re.search(login_success_flag, r1.content) if not success: print('Fail to login.') exit(2) else: print('Login done...') se = re.search(regex_loc, r1.content) r = session.get( se.group(1), allow_redirects=True, cookies={'NTES_PASSPORT': session.cookies['NTES_PASSPORT']}) # get course id, it's in cid.group(1) r2 = session.get(course_link) cid = re.search(r'window\.termDto = { id:([0-9]+),', r2.content) if cid is None: cid = re.search(r'termId : \"([0-9]+)\",', r2.content) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36', 'Accept': '*/*', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6,zh-TW;q=0.4', 'Connection': 'keep-alive', 'Content-Type': 'text/plain', 'Cookie': 'STUDY_SESS=%s; ' % session.cookies['STUDY_SESS'], 'Host': web_host, } session.headers.update(headers) params = { 'callCount': 1, 'scriptSessionId': '${scriptSessionId}190', 'httpSessionId': 'e8890caec7fe435d944c0f318b932719', 'c0-scriptName': 'CourseBean', 'c0-id': 0, 'c0-methodName': 'getLastLearnedMocTermDto', 'c0-param0': 'number:' + cid.group(1), 'batchId': 434820, #arbitrarily } getcourse_url = 'http://www.icourse163.org/dwr/call/plaincall/CourseBean.getLastLearnedMocTermDto.dwr' r3 = session.post(getcourse_url, data=params) print('Parsing...', end="") syllabus = parse_syllabus_icourse163(session, r3.content) if syllabus: print('Done.') else: print('Failed. No course content on the page.') sys.exit(0) print('Save files to %s' % path) download_syllabus_icourse163(session, syllabus, path)
def conv_spatial(): ############################################################################ # TEMPORAL CONVERGENCE TEST FOR ADVECTION ############################################################################ mpi_num_procs, omp_num_threads = utils.parse_args() prog = 'advtv' num_steps = 8 ############################## # TREE TOLERANCE ############################## tl_fact = 0.1 tl_init = 1e-1 tl_list = [ tl_init * math.pow(tl_fact, float(cnt)) for cnt in range(0, num_steps) ] ############################## # TIME RESOLUTION ############################## dt_fact = 1 dt_init = 1e-3 dt_list = [ dt_init * math.pow(dt_fact, float(cnt)) for cnt in range(0, num_steps) ] T_END = 1.0 tn_fact = 1.0 / dt_fact tn_init = 1 #T_END/dt_init tn_list = [ tn_init * math.pow(tn_fact, float(cnt)) for cnt in range(0, num_steps) ] ############################## # TREE DEPTH/POINTS ############################## dp_list = [15 for cnt in range(0, num_steps)] num_pnts = 8**(math.floor(math.log(mpi_num_procs, 8) + 1)) pn_list = [num_pnts for cnt in range(0, num_steps)] ############################## # PARALLEL ############################## mpi_num_procs = mpi_num_procs np_list = [mpi_num_procs for cnt in range(0, num_steps)] nt = omp_num_threads nt_list = [nt for cnt in range(0, num_steps)] mrg_type = 3 mg_list = [mrg_type for cnt in range(0, num_steps)] ############################## # CHEBYSHEV/CUBIC INTERPOLATION ############################## cq_list = [14 for cnt in range(0, num_steps)] ci_list = [True for cnt in range(0, num_steps)] uf_list = [4 for cnt in range(0, num_steps)] ############################## # VISUALIZATION ############################## vtk_save_rate = 0 vs_list = [vtk_save_rate for cnt in range(0, num_steps)] cmd_args = OrderedDict() cmd_args = utils.generate_commands(prog, pn_list, tl_list, dp_list, cq_list, ci_list, uf_list, np_list, nt_list, dt_list, tn_list, vs_list, mg_list) utils.execute_commands(cmd_args, 'spatial')
def main(): global args args = parse_args() train_net(args)
#!/usr/bin/env python import sys sys.path.append('..') from piv.ufojob import UfoJob from utils import parse_args in_path, out_file = parse_args() #number = 1 in_path = in_path or './inputs' out_file = out_file or './output/bilateral.tif' print 'Input image is ', in_path print 'Output path is ', out_file class UfoJob(UfoJob): def setup_tasks(self): p = self.parms self.add_task('read', path=in_path) self.add_task('write', filename=out_file) self.add_task('bilateral') def setup_graph(self): b = self.branch('read', 'bilateral', 'write') self.graph.connect_branch(b) uj = UfoJob() uj.setup_tasks() uj.setup_graph() uj.run_t()