def pretrain_osm(lam_kld=0.0): # Initialize a source of randomness rng = np.random.RandomState(1234) # Load some data to train/validate/test with dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, zero_mean=False) Xtr = datasets[0][0] Xtr = Xtr.get_value(borrow=False) Xva = datasets[2][0] Xva = Xva.get_value(borrow=False) print("Xtr.shape: {0:s}, Xva.shape: {1:s}".format(str(Xtr.shape),str(Xva.shape))) # get and set some basic dataset information Xtr_mean = np.mean(Xtr, axis=0) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 100 batch_reps = 5 # setup some symbolic variables and stuff Xd = T.matrix('Xd_base') Xc = T.matrix('Xc_base') Xm = T.matrix('Xm_base') data_dim = Xtr.shape[1] prior_sigma = 1.0 ########################## # NETWORK CONFIGURATIONS # ########################## gn_params = {} shared_config = [PRIOR_DIM, 1000, 1000] top_config = [shared_config[-1], data_dim] gn_params['shared_config'] = shared_config gn_params['mu_config'] = top_config gn_params['sigma_config'] = top_config gn_params['activation'] = relu_actfun gn_params['init_scale'] = 1.4 gn_params['lam_l2a'] = 0.0 gn_params['vis_drop'] = 0.0 gn_params['hid_drop'] = 0.0 gn_params['bias_noise'] = 0.0 gn_params['input_noise'] = 0.0 # choose some parameters for the continuous inferencer in_params = {} shared_config = [data_dim, 1000, 1000] top_config = [shared_config[-1], PRIOR_DIM] in_params['shared_config'] = shared_config in_params['mu_config'] = top_config in_params['sigma_config'] = top_config in_params['activation'] = relu_actfun in_params['init_scale'] = 1.4 in_params['lam_l2a'] = 0.0 in_params['vis_drop'] = 0.0 in_params['hid_drop'] = 0.0 in_params['bias_noise'] = 0.0 in_params['input_noise'] = 0.0 # Initialize the base networks for this OneStageModel IN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=in_params, shared_param_dicts=None) GN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=gn_params, shared_param_dicts=None) # Initialize biases in IN and GN IN.init_biases(0.2) GN.init_biases(0.2) ######################### # INITIALIZE THE GIPAIR # ######################### osm_params = {} osm_params['x_type'] = 'bernoulli' osm_params['xt_transform'] = 'sigmoid' osm_params['logvar_bound'] = LOGVAR_BOUND OSM = OneStageModel(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, \ p_x_given_z=GN, q_z_given_x=IN, \ x_dim=data_dim, z_dim=PRIOR_DIM, params=osm_params) OSM.set_lam_l2w(1e-5) safe_mean = (0.9 * Xtr_mean) + 0.05 safe_mean_logit = np.log(safe_mean / (1.0 - safe_mean)) OSM.set_output_bias(safe_mean_logit) OSM.set_input_bias(-Xtr_mean) ###################### # BASIC VAE TRAINING # ###################### out_file = open(RESULT_PATH+"pt_osm_results.txt", 'wb') # Set initial learning rate and basic SGD hyper parameters obs_costs = np.zeros((batch_size,)) costs = [0. for i in range(10)] learn_rate = 0.0005 for i in range(150000): scale = min(1.0, float(i) / 10000.0) if ((i > 1) and ((i % 20000) == 0)): learn_rate = learn_rate * 0.9 # do a minibatch update of the model, and compute some costs tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,)) Xd_batch = Xtr.take(tr_idx, axis=0) Xc_batch = 0.0 * Xd_batch Xm_batch = 0.0 * Xd_batch # do a minibatch update of the model, and compute some costs OSM.set_sgd_params(lr_1=(scale*learn_rate), mom_1=0.5, mom_2=0.98) OSM.set_lam_nll(1.0) OSM.set_lam_kld(lam_kld_1=(1.0 + (scale*(lam_kld-1.0))), lam_kld_2=0.0) result = OSM.train_joint(Xd_batch, Xc_batch, Xm_batch, batch_reps) costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 1000) == 0): # record and then reset the cost trackers costs = [(v / 1000.0) for v in costs] str_1 = "-- batch {0:d} --".format(i) str_2 = " joint_cost: {0:.4f}".format(costs[0]) str_3 = " nll_cost : {0:.4f}".format(costs[1]) str_4 = " kld_cost : {0:.4f}".format(costs[2]) str_5 = " reg_cost : {0:.4f}".format(costs[3]) costs = [0.0 for v in costs] # print out some diagnostic information joint_str = "\n".join([str_1, str_2, str_3, str_4, str_5]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() if ((i % 2000) == 0): Xva = row_shuffle(Xva) model_samps = OSM.sample_from_prior(500) file_name = RESULT_PATH+"pt_osm_samples_b{0:d}_XG.png".format(i) utils.visualize_samples(model_samps, file_name, num_rows=20) # compute information about free-energy on validation set file_name = RESULT_PATH+"pt_osm_free_energy_b{0:d}.png".format(i) fe_terms = OSM.compute_fe_terms(Xva[0:2500], 20) fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1]) fe_str = " nll_bound : {0:.4f}".format(fe_mean) print(fe_str) out_file.write(fe_str+"\n") utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \ x_label='Posterior KLd', y_label='Negative Log-likelihood') # compute information about posterior KLds on validation set file_name = RESULT_PATH+"pt_osm_post_klds_b{0:d}.png".format(i) post_klds = OSM.compute_post_klds(Xva[0:2500]) post_dim_klds = np.mean(post_klds, axis=0) utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, \ file_name) if ((i % 5000) == 0): IN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_b{0:d}_IN.pkl".format(i)) GN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_b{0:d}_GN.pkl".format(i)) IN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_IN.pkl") GN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_GN.pkl") return
def pretrain_osm(lam_kld=0.0): # Initialize a source of randomness rng = np.random.RandomState(1234) # Load some data to train/validate/test with data_file = 'data/tfd_data_48x48.pkl' dataset = load_tfd(tfd_pkl_name=data_file, which_set='unlabeled', fold='all') Xtr_unlabeled = dataset[0] dataset = load_tfd(tfd_pkl_name=data_file, which_set='train', fold='all') Xtr_train = dataset[0] Xtr = np.vstack([Xtr_unlabeled, Xtr_train]) dataset = load_tfd(tfd_pkl_name=data_file, which_set='valid', fold='all') Xva = dataset[0] tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 400 batch_reps = 6 carry_frac = 0.25 carry_size = int(batch_size * carry_frac) reset_prob = 0.04 # setup some symbolic variables and stuff Xd = T.matrix('Xd_base') Xc = T.matrix('Xc_base') Xm = T.matrix('Xm_base') data_dim = Xtr.shape[1] prior_sigma = 1.0 Xtr_mean = np.mean(Xtr, axis=0) ########################## # NETWORK CONFIGURATIONS # ########################## gn_params = {} shared_config = [PRIOR_DIM, 1500, 1500] top_config = [shared_config[-1], data_dim] gn_params['shared_config'] = shared_config gn_params['mu_config'] = top_config gn_params['sigma_config'] = top_config gn_params['activation'] = relu_actfun gn_params['init_scale'] = 1.4 gn_params['lam_l2a'] = 0.0 gn_params['vis_drop'] = 0.0 gn_params['hid_drop'] = 0.0 gn_params['bias_noise'] = 0.0 gn_params['input_noise'] = 0.0 # choose some parameters for the continuous inferencer in_params = {} shared_config = [data_dim, 1500, 1500] top_config = [shared_config[-1], PRIOR_DIM] in_params['shared_config'] = shared_config in_params['mu_config'] = top_config in_params['sigma_config'] = top_config in_params['activation'] = relu_actfun in_params['init_scale'] = 1.4 in_params['lam_l2a'] = 0.0 in_params['vis_drop'] = 0.0 in_params['hid_drop'] = 0.0 in_params['bias_noise'] = 0.0 in_params['input_noise'] = 0.0 # Initialize the base networks for this OneStageModel IN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=in_params, shared_param_dicts=None) GN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=gn_params, shared_param_dicts=None) # Initialize biases in IN and GN IN.init_biases(0.2) GN.init_biases(0.2) ###################################### # LOAD AND RESTART FROM SAVED PARAMS # ###################################### # gn_fname = RESULT_PATH+"pt_osm_params_b110000_GN.pkl" # in_fname = RESULT_PATH+"pt_osm_params_b110000_IN.pkl" # IN = load_infnet_from_file(f_name=in_fname, rng=rng, Xd=Xd, \ # new_params=None) # GN = load_infnet_from_file(f_name=gn_fname, rng=rng, Xd=Xd, \ # new_params=None) # in_params = IN.params # gn_params = GN.params ######################### # INITIALIZE THE GIPAIR # ######################### osm_params = {} osm_params['x_type'] = 'bernoulli' osm_params['xt_transform'] = 'sigmoid' osm_params['logvar_bound'] = LOGVAR_BOUND OSM = OneStageModel(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, \ p_x_given_z=GN, q_z_given_x=IN, \ x_dim=data_dim, z_dim=PRIOR_DIM, params=osm_params) OSM.set_lam_l2w(1e-5) safe_mean = (0.9 * Xtr_mean) + 0.05 safe_mean_logit = np.log(safe_mean / (1.0 - safe_mean)) OSM.set_output_bias(safe_mean_logit) OSM.set_input_bias(-Xtr_mean) ###################### # BASIC VAE TRAINING # ###################### out_file = open(RESULT_PATH+"pt_osm_results.txt", 'wb') # Set initial learning rate and basic SGD hyper parameters obs_costs = np.zeros((batch_size,)) costs = [0. for i in range(10)] learn_rate = 0.002 for i in range(200000): scale = min(1.0, float(i) / 5000.0) if ((i > 1) and ((i % 20000) == 0)): learn_rate = learn_rate * 0.8 if (i < 50000): momentum = 0.5 elif (i < 10000): momentum = 0.7 else: momentum = 0.9 if ((i == 0) or (npr.rand() < reset_prob)): # sample a fully random batch batch_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,)) else: # sample a partially random batch, which retains some portion of # the worst scoring examples from the previous batch fresh_idx = npr.randint(low=0,high=tr_samples,size=(batch_size-carry_size,)) batch_idx = np.concatenate((fresh_idx.ravel(), carry_idx.ravel())) # do a minibatch update of the model, and compute some costs tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,)) Xd_batch = Xtr.take(tr_idx, axis=0) Xc_batch = 0.0 * Xd_batch Xm_batch = 0.0 * Xd_batch # do a minibatch update of the model, and compute some costs OSM.set_sgd_params(lr_1=(scale*learn_rate), \ mom_1=(scale*momentum), mom_2=0.98) OSM.set_lam_nll(1.0) OSM.set_lam_kld(lam_kld_1=scale*lam_kld, lam_kld_2=0.0, lam_kld_c=50.0) result = OSM.train_joint(Xd_batch, Xc_batch, Xm_batch, batch_reps) batch_costs = result[4] + result[5] obs_costs = collect_obs_costs(batch_costs, batch_reps) carry_idx = batch_idx[np.argsort(-obs_costs)[0:carry_size]] costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 1000) == 0): # record and then reset the cost trackers costs = [(v / 1000.0) for v in costs] str_1 = "-- batch {0:d} --".format(i) str_2 = " joint_cost: {0:.4f}".format(costs[0]) str_3 = " nll_cost : {0:.4f}".format(costs[1]) str_4 = " kld_cost : {0:.4f}".format(costs[2]) str_5 = " reg_cost : {0:.4f}".format(costs[3]) costs = [0.0 for v in costs] # print out some diagnostic information joint_str = "\n".join([str_1, str_2, str_3, str_4, str_5]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() if ((i % 2000) == 0): Xva = row_shuffle(Xva) model_samps = OSM.sample_from_prior(500) file_name = RESULT_PATH+"pt_osm_samples_b{0:d}_XG.png".format(i) utils.visualize_samples(model_samps, file_name, num_rows=20) file_name = RESULT_PATH+"pt_osm_inf_weights_b{0:d}.png".format(i) utils.visualize_samples(OSM.inf_weights.get_value(borrow=False).T, \ file_name, num_rows=30) file_name = RESULT_PATH+"pt_osm_gen_weights_b{0:d}.png".format(i) utils.visualize_samples(OSM.gen_weights.get_value(borrow=False), \ file_name, num_rows=30) # compute information about free-energy on validation set file_name = RESULT_PATH+"pt_osm_free_energy_b{0:d}.png".format(i) fe_terms = OSM.compute_fe_terms(Xva[0:2500], 20) fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1]) fe_str = " nll_bound : {0:.4f}".format(fe_mean) print(fe_str) out_file.write(fe_str+"\n") utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \ x_label='Posterior KLd', y_label='Negative Log-likelihood') # compute information about posterior KLds on validation set file_name = RESULT_PATH+"pt_osm_post_klds_b{0:d}.png".format(i) post_klds = OSM.compute_post_klds(Xva[0:2500]) post_dim_klds = np.mean(post_klds, axis=0) utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, \ file_name) if ((i % 5000) == 0): IN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_b{0:d}_IN.pkl".format(i)) GN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_b{0:d}_GN.pkl".format(i)) IN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_IN.pkl") GN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_GN.pkl") return
def pretrain_osm(lam_kld=0.0): # Initialize a source of randomness rng = np.random.RandomState(1234) # Load some data to train/validate/test with data_file = 'data/tfd_data_48x48.pkl' dataset = load_tfd(tfd_pkl_name=data_file, which_set='unlabeled', fold='all') Xtr_unlabeled = dataset[0] dataset = load_tfd(tfd_pkl_name=data_file, which_set='train', fold='all') Xtr_train = dataset[0] Xtr = np.vstack([Xtr_unlabeled, Xtr_train]) dataset = load_tfd(tfd_pkl_name=data_file, which_set='valid', fold='all') Xva = dataset[0] tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 400 batch_reps = 6 carry_frac = 0.25 carry_size = int(batch_size * carry_frac) reset_prob = 0.04 # setup some symbolic variables and stuff Xd = T.matrix('Xd_base') Xc = T.matrix('Xc_base') Xm = T.matrix('Xm_base') data_dim = Xtr.shape[1] prior_sigma = 1.0 Xtr_mean = np.mean(Xtr, axis=0) ########################## # NETWORK CONFIGURATIONS # ########################## gn_params = {} shared_config = [PRIOR_DIM, 1500, 1500] top_config = [shared_config[-1], data_dim] gn_params['shared_config'] = shared_config gn_params['mu_config'] = top_config gn_params['sigma_config'] = top_config gn_params['activation'] = relu_actfun gn_params['init_scale'] = 1.4 gn_params['lam_l2a'] = 0.0 gn_params['vis_drop'] = 0.0 gn_params['hid_drop'] = 0.0 gn_params['bias_noise'] = 0.0 gn_params['input_noise'] = 0.0 # choose some parameters for the continuous inferencer in_params = {} shared_config = [data_dim, 1500, 1500] top_config = [shared_config[-1], PRIOR_DIM] in_params['shared_config'] = shared_config in_params['mu_config'] = top_config in_params['sigma_config'] = top_config in_params['activation'] = relu_actfun in_params['init_scale'] = 1.4 in_params['lam_l2a'] = 0.0 in_params['vis_drop'] = 0.0 in_params['hid_drop'] = 0.0 in_params['bias_noise'] = 0.0 in_params['input_noise'] = 0.0 # Initialize the base networks for this OneStageModel IN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=in_params, shared_param_dicts=None) GN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=gn_params, shared_param_dicts=None) # Initialize biases in IN and GN IN.init_biases(0.2) GN.init_biases(0.2) ###################################### # LOAD AND RESTART FROM SAVED PARAMS # ###################################### # gn_fname = RESULT_PATH+"pt_osm_params_b110000_GN.pkl" # in_fname = RESULT_PATH+"pt_osm_params_b110000_IN.pkl" # IN = load_infnet_from_file(f_name=in_fname, rng=rng, Xd=Xd, \ # new_params=None) # GN = load_infnet_from_file(f_name=gn_fname, rng=rng, Xd=Xd, \ # new_params=None) # in_params = IN.params # gn_params = GN.params ######################### # INITIALIZE THE GIPAIR # ######################### osm_params = {} osm_params['x_type'] = 'bernoulli' osm_params['xt_transform'] = 'sigmoid' osm_params['logvar_bound'] = LOGVAR_BOUND OSM = OneStageModel(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, \ p_x_given_z=GN, q_z_given_x=IN, \ x_dim=data_dim, z_dim=PRIOR_DIM, params=osm_params) OSM.set_lam_l2w(1e-5) safe_mean = (0.9 * Xtr_mean) + 0.05 safe_mean_logit = np.log(safe_mean / (1.0 - safe_mean)) OSM.set_output_bias(safe_mean_logit) OSM.set_input_bias(-Xtr_mean) ###################### # BASIC VAE TRAINING # ###################### out_file = open(RESULT_PATH + "pt_osm_results.txt", 'wb') # Set initial learning rate and basic SGD hyper parameters obs_costs = np.zeros((batch_size, )) costs = [0. for i in range(10)] learn_rate = 0.002 for i in range(200000): scale = min(1.0, float(i) / 5000.0) if ((i > 1) and ((i % 20000) == 0)): learn_rate = learn_rate * 0.8 if (i < 50000): momentum = 0.5 elif (i < 10000): momentum = 0.7 else: momentum = 0.9 if ((i == 0) or (npr.rand() < reset_prob)): # sample a fully random batch batch_idx = npr.randint(low=0, high=tr_samples, size=(batch_size, )) else: # sample a partially random batch, which retains some portion of # the worst scoring examples from the previous batch fresh_idx = npr.randint(low=0, high=tr_samples, size=(batch_size - carry_size, )) batch_idx = np.concatenate((fresh_idx.ravel(), carry_idx.ravel())) # do a minibatch update of the model, and compute some costs tr_idx = npr.randint(low=0, high=tr_samples, size=(batch_size, )) Xd_batch = Xtr.take(tr_idx, axis=0) Xc_batch = 0.0 * Xd_batch Xm_batch = 0.0 * Xd_batch # do a minibatch update of the model, and compute some costs OSM.set_sgd_params(lr_1=(scale*learn_rate), \ mom_1=(scale*momentum), mom_2=0.98) OSM.set_lam_nll(1.0) OSM.set_lam_kld(lam_kld_1=scale * lam_kld, lam_kld_2=0.0, lam_kld_c=50.0) result = OSM.train_joint(Xd_batch, Xc_batch, Xm_batch, batch_reps) batch_costs = result[4] + result[5] obs_costs = collect_obs_costs(batch_costs, batch_reps) carry_idx = batch_idx[np.argsort(-obs_costs)[0:carry_size]] costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 1000) == 0): # record and then reset the cost trackers costs = [(v / 1000.0) for v in costs] str_1 = "-- batch {0:d} --".format(i) str_2 = " joint_cost: {0:.4f}".format(costs[0]) str_3 = " nll_cost : {0:.4f}".format(costs[1]) str_4 = " kld_cost : {0:.4f}".format(costs[2]) str_5 = " reg_cost : {0:.4f}".format(costs[3]) costs = [0.0 for v in costs] # print out some diagnostic information joint_str = "\n".join([str_1, str_2, str_3, str_4, str_5]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() if ((i % 2000) == 0): Xva = row_shuffle(Xva) model_samps = OSM.sample_from_prior(500) file_name = RESULT_PATH + "pt_osm_samples_b{0:d}_XG.png".format(i) utils.visualize_samples(model_samps, file_name, num_rows=20) file_name = RESULT_PATH + "pt_osm_inf_weights_b{0:d}.png".format(i) utils.visualize_samples(OSM.inf_weights.get_value(borrow=False).T, \ file_name, num_rows=30) file_name = RESULT_PATH + "pt_osm_gen_weights_b{0:d}.png".format(i) utils.visualize_samples(OSM.gen_weights.get_value(borrow=False), \ file_name, num_rows=30) # compute information about free-energy on validation set file_name = RESULT_PATH + "pt_osm_free_energy_b{0:d}.png".format(i) fe_terms = OSM.compute_fe_terms(Xva[0:2500], 20) fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1]) fe_str = " nll_bound : {0:.4f}".format(fe_mean) print(fe_str) out_file.write(fe_str + "\n") utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \ x_label='Posterior KLd', y_label='Negative Log-likelihood') # compute information about posterior KLds on validation set file_name = RESULT_PATH + "pt_osm_post_klds_b{0:d}.png".format(i) post_klds = OSM.compute_post_klds(Xva[0:2500]) post_dim_klds = np.mean(post_klds, axis=0) utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, \ file_name) if ((i % 5000) == 0): IN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_b{0:d}_IN.pkl".format(i)) GN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_b{0:d}_GN.pkl".format(i)) IN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_IN.pkl") GN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_GN.pkl") return
def test_with_model_init(): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) Xtr, Xva, Xte = load_binarized_mnist(data_path='./data/') del Xte tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ obs_dim = Xtr.shape[1] z_dim = 20 h_dim = 200 ir_steps = 6 init_scale = 1.0 x_type = 'bernoulli' # some InfNet instances to build the TwoStageModel from x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') ################# # p_hi_given_si # ################# params = {} shared_config = [obs_dim, 300, 300] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_hi_given_si = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_hi_given_si.init_biases(0.2) ###################### # p_sip1_given_si_hi # ###################### params = {} shared_config = [h_dim, 300, 300] output_config = [obs_dim, obs_dim, obs_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_sip1_given_si_hi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_sip1_given_si_hi.init_biases(0.2) ################ # p_s0_given_z # ################ params = {} shared_config = [z_dim, 250, 250] top_config = [shared_config[-1], obs_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_s0_given_z = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_s0_given_z.init_biases(0.2) ############### # q_z_given_x # ############### params = {} shared_config = [obs_dim, 250, 250] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_z_given_x = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_z_given_x.init_biases(0.2) ################### # q_hi_given_x_si # ################### params = {} shared_config = [(obs_dim + obs_dim), 500, 500] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_hi_given_x_si = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_hi_given_x_si.init_biases(0.2) ################################################################ # Define parameters for the MultiStageModel, and initialize it # ################################################################ print("Building the MultiStageModel...") msm_params = {} msm_params['x_type'] = x_type msm_params['obs_transform'] = 'sigmoid' MSM = MultiStageModel(rng=rng, x_in=x_in_sym, x_out=x_out_sym, \ p_s0_given_z=p_s0_given_z, \ p_hi_given_si=p_hi_given_si, \ p_sip1_given_si_hi=p_sip1_given_si_hi, \ q_z_given_x=q_z_given_x, \ q_hi_given_x_si=q_hi_given_x_si, \ obs_dim=obs_dim, z_dim=z_dim, h_dim=h_dim, \ ir_steps=ir_steps, params=msm_params) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ out_file = open("MSM_A_RESULTS.txt", 'wb') costs = [0. for i in range(10)] learn_rate = 0.0003 momentum = 0.9 batch_idx = np.arange(batch_size) + tr_samples for i in range(250000): scale = min(1.0, ((i+1) / 3000.0)) if (((i + 1) % 10000) == 0): learn_rate = learn_rate * 0.95 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update MSM.set_sgd_params(lr_1=scale*learn_rate, lr_2=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.99) MSM.set_train_switch(1.0) MSM.set_lam_nll(lam_nll=1.0) MSM.set_lam_kld(lam_kld_z=1.0, lam_kld_q2p=0.8, lam_kld_p2q=0.2) MSM.set_lam_kld_l1l2(lam_kld_l1l2=1.0) MSM.set_lam_l2w(1e-4) MSM.set_drop_rate(0.0) MSM.q_hi_given_x_si.set_bias_noise(0.0) MSM.p_hi_given_si.set_bias_noise(0.0) MSM.p_sip1_given_si_hi.set_bias_noise(0.0) # perform a minibatch update and record the cost for this batch Xb_tr = to_fX( Xtr.take(batch_idx, axis=0) ) result = MSM.train_joint(Xb_tr, Xb_tr, batch_reps) costs = [(costs[j] + result[j]) for j in range(len(result)-1)] if ((i % 500) == 0): costs = [(v / 500.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_cost : {0:.4f}".format(costs[1]) str4 = " kld_cost : {0:.4f}".format(costs[2]) str5 = " reg_cost : {0:.4f}".format(costs[3]) joint_str = "\n".join([str1, str2, str3, str4, str5]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if (((i % 2000) == 0) or ((i < 10000) and ((i % 1000) == 0))): MSM.set_drop_rate(0.0) MSM.q_hi_given_x_si.set_bias_noise(0.0) MSM.p_hi_given_si.set_bias_noise(0.0) MSM.p_sip1_given_si_hi.set_bias_noise(0.0) # Get some validation samples for computing diagnostics Xva = row_shuffle(Xva) Xb_va = to_fX( Xva[0:2000] ) # draw some independent random samples from the model samp_count = 200 model_samps = MSM.sample_from_prior(samp_count) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "MSM_A_SAMPLES_IND_b{0:d}.png".format(i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # draw some conditional random samples from the model samp_count = 200 Xs = np.vstack((Xb_tr[0:(samp_count/4)], Xb_va[0:(samp_count/4)])) Xs = np.repeat(Xs, 2, axis=0) # draw some conditional random samples from the model model_samps = MSM.sample_from_input(Xs, guided_decoding=False) model_samps.append(Xs) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "MSM_A_SAMPLES_CND_b{0:d}.png".format(i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # compute information about posterior KLds on validation set raw_klds = MSM.compute_raw_klds(Xb_va, Xb_va) init_kld, q2p_kld, p2q_kld = raw_klds file_name = "MSM_A_H0_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(init_kld.shape[1]), \ np.mean(init_kld, axis=0), file_name) file_name = "MSM_A_HI_Q2P_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(q2p_kld.shape[1]), \ np.mean(q2p_kld, axis=0), file_name) file_name = "MSM_A_HI_P2Q_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(p2q_kld.shape[1]), \ np.mean(p2q_kld, axis=0), file_name) Xb_tr = to_fX( Xtr[0:2000] ) fe_terms = MSM.compute_fe_terms(Xb_tr, Xb_tr, 30) fe_nll = np.mean(fe_terms[0]) fe_kld = np.mean(fe_terms[1]) fe_joint = fe_nll + fe_kld joint_str = " vfe-tr: {0:.4f}, nll: ({1:.4f}, {2:.4f}, {3:.4f}), kld: ({4:.4f}, {5:.4f}, {6:.4f})".format( \ fe_joint, fe_nll, np.min(fe_terms[0]), np.max(fe_terms[0]), fe_kld, np.min(fe_terms[1]), np.max(fe_terms[1])) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() fe_terms = MSM.compute_fe_terms(Xb_va, Xb_va, 30) fe_nll = np.mean(fe_terms[0]) fe_kld = np.mean(fe_terms[1]) fe_joint = fe_nll + fe_kld joint_str = " vfe-va: {0:.4f}, nll: ({1:.4f}, {2:.4f}, {3:.4f}), kld: ({4:.4f}, {5:.4f}, {6:.4f})".format( \ fe_joint, fe_nll, np.min(fe_terms[0]), np.max(fe_terms[0]), fe_kld, np.min(fe_terms[1]), np.max(fe_terms[1])) print(joint_str) out_file.write(joint_str+"\n") out_file.flush()
def test_with_model_init(): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, zero_mean=False) Xtr_shared = datasets[0][0] Xva_shared = datasets[1][0] Xtr = Xtr_shared.get_value(borrow=False).astype(theano.config.floatX) Xva = Xva_shared.get_value(borrow=False).astype(theano.config.floatX) tr_samples = Xtr.shape[0] batch_size = 200 batch_reps = 1 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ obs_dim = Xtr.shape[1] z_dim = 20 h_dim = 100 x_type = 'bernoulli' # some InfNet instances to build the TwoStageModel from X_sym = T.matrix('X_sym') ######################## # p_s0_obs_given_z_obs # ######################## params = {} shared_config = [z_dim, 250, 250] top_config = [shared_config[-1], obs_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 1e-3 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_s0_obs_given_z_obs = InfNet(rng=rng, Xd=X_sym, \ params=params, shared_param_dicts=None) p_s0_obs_given_z_obs.init_biases(0.2) ################# # p_hi_given_si # ################# params = {} shared_config = [obs_dim, 250, 250] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_hi_given_si = InfNet(rng=rng, Xd=X_sym, \ params=params, shared_param_dicts=None) p_hi_given_si.init_biases(0.2) ###################### # p_sip1_given_si_hi # ###################### params = {} shared_config = [h_dim, 250, 250] top_config = [shared_config[-1], obs_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_sip1_given_si_hi = InfNet(rng=rng, Xd=X_sym, \ params=params, shared_param_dicts=None) p_sip1_given_si_hi.init_biases(0.2) ############### # q_z_given_x # ############### params = {} shared_config = [obs_dim, 250, 250] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_z_given_x = InfNet(rng=rng, Xd=X_sym, \ params=params, shared_param_dicts=None) q_z_given_x.init_biases(0.2) ################### # q_hi_given_x_si # ################### params = {} shared_config = [(obs_dim + obs_dim), 500, 500] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_hi_given_x_si = InfNet(rng=rng, Xd=X_sym, \ params=params, shared_param_dicts=None) q_hi_given_x_si.init_biases(0.2) ################################################################ # Define parameters for the MultiStageModel, and initialize it # ################################################################ print("Building the MultiStageModel...") msm_params = {} msm_params['x_type'] = x_type msm_params['obs_transform'] = 'sigmoid' MSM = MultiStageModel(rng=rng, x_in=X_sym, \ p_s0_obs_given_z_obs=p_s0_obs_given_z_obs, \ p_hi_given_si=p_hi_given_si, \ p_sip1_given_si_hi=p_sip1_given_si_hi, \ q_z_given_x=q_z_given_x, \ q_hi_given_x_si=q_hi_given_x_si, \ obs_dim=obs_dim, z_dim=z_dim, h_dim=h_dim, \ model_init_obs=True, ir_steps=2, \ params=msm_params) obs_mean = (0.9 * np.mean(Xtr, axis=0)) + 0.05 obs_mean_logit = np.log(obs_mean / (1.0 - obs_mean)) MSM.set_input_bias(-obs_mean) MSM.set_obs_bias(0.1*obs_mean_logit) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ costs = [0. for i in range(10)] learn_rate = 0.0003 momentum = 0.8 for i in range(300000): scale = min(1.0, ((i+1) / 10000.0)) extra_kl = max(0.0, ((50000.0 - i) / 50000.0)) if (((i + 1) % 10000) == 0): learn_rate = learn_rate * 0.95 # randomly sample a minibatch tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,)) Xb = binarize_data(Xtr.take(tr_idx, axis=0)) Xb = Xb.astype(theano.config.floatX) # set sgd and objective function hyperparams for this update MSM.set_sgd_params(lr_1=scale*learn_rate, lr_2=scale*learn_rate, \ mom_1=(scale*momentum), mom_2=0.98) MSM.set_train_switch(1.0) MSM.set_l1l2_weight(1.0) MSM.set_lam_nll(lam_nll=1.0) MSM.set_lam_kld(lam_kld_1=(1.0+extra_kl), lam_kld_2=(1.0+extra_kl)) MSM.set_lam_l2w(1e-6) MSM.set_kzg_weight(0.01) # perform a minibatch update and record the cost for this batch result = MSM.train_joint(Xb, batch_reps) costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 500) == 0): costs = [(v / 500.0) for v in costs] print("-- batch {0:d} --".format(i)) print(" joint_cost: {0:.4f}".format(costs[0])) print(" nll_cost : {0:.4f}".format(costs[1])) print(" kld_cost : {0:.4f}".format(costs[2])) print(" reg_cost : {0:.4f}".format(costs[3])) costs = [0.0 for v in costs] if (((i % 2000) == 0) or ((i < 10000) and ((i % 1000) == 0))): Xva = row_shuffle(Xva) # draw some independent random samples from the model samp_count = 200 model_samps = MSM.sample_from_prior(samp_count) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "MX_SAMPLES_b{0:d}.png".format(i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # visualize some important weights in the model file_name = "MX_INF_1_WEIGHTS_b{0:d}.png".format(i) W = MSM.inf_1_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MX_INF_2_WEIGHTS_b{0:d}.png".format(i) W = MSM.inf_2_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MX_GEN_1_WEIGHTS_b{0:d}.png".format(i) W = MSM.gen_1_weights.get_value(borrow=False) utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MX_GEN_2_WEIGHTS_b{0:d}.png".format(i) W = MSM.gen_2_weights.get_value(borrow=False) utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MX_GEN_INF_WEIGHTS_b{0:d}.png".format(i) W = MSM.gen_inf_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) # compute information about posterior KLds on validation set post_klds = MSM.compute_post_klds(Xva[0:5000]) file_name = "MX_H0_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(post_klds[0].shape[1]), \ np.mean(post_klds[0], axis=0), file_name) file_name = "MX_HI_COND_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(post_klds[1].shape[1]), \ np.mean(post_klds[1], axis=0), file_name) file_name = "MX_HI_GLOB_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(post_klds[2].shape[1]), \ np.mean(post_klds[2], axis=0), file_name) # compute information about free-energy on validation set file_name = "MX_FREE_ENERGY_b{0:d}.png".format(i) fe_terms = MSM.compute_fe_terms(binarize_data(Xva[0:5000]), 20) fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1]) print(" nll_bound : {0:.4f}".format(fe_mean)) utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \ x_label='Posterior KLd', y_label='Negative Log-likelihood') return
def pretrain_osm(lam_kld=0.0): # Initialize a source of randomness rng = np.random.RandomState(1234) # Load some data to train/validate/test with dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, zero_mean=False) Xtr = datasets[0][0] Xtr = Xtr.get_value(borrow=False) Xva = datasets[2][0] Xva = Xva.get_value(borrow=False) print("Xtr.shape: {0:s}, Xva.shape: {1:s}".format(str(Xtr.shape), str(Xva.shape))) # get and set some basic dataset information Xtr_mean = np.mean(Xtr, axis=0) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 100 batch_reps = 5 # setup some symbolic variables and stuff Xd = T.matrix('Xd_base') Xc = T.matrix('Xc_base') Xm = T.matrix('Xm_base') data_dim = Xtr.shape[1] prior_sigma = 1.0 ########################## # NETWORK CONFIGURATIONS # ########################## gn_params = {} shared_config = [PRIOR_DIM, 1000, 1000] top_config = [shared_config[-1], data_dim] gn_params['shared_config'] = shared_config gn_params['mu_config'] = top_config gn_params['sigma_config'] = top_config gn_params['activation'] = relu_actfun gn_params['init_scale'] = 1.4 gn_params['lam_l2a'] = 0.0 gn_params['vis_drop'] = 0.0 gn_params['hid_drop'] = 0.0 gn_params['bias_noise'] = 0.0 gn_params['input_noise'] = 0.0 # choose some parameters for the continuous inferencer in_params = {} shared_config = [data_dim, 1000, 1000] top_config = [shared_config[-1], PRIOR_DIM] in_params['shared_config'] = shared_config in_params['mu_config'] = top_config in_params['sigma_config'] = top_config in_params['activation'] = relu_actfun in_params['init_scale'] = 1.4 in_params['lam_l2a'] = 0.0 in_params['vis_drop'] = 0.0 in_params['hid_drop'] = 0.0 in_params['bias_noise'] = 0.0 in_params['input_noise'] = 0.0 # Initialize the base networks for this OneStageModel IN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=in_params, shared_param_dicts=None) GN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \ params=gn_params, shared_param_dicts=None) # Initialize biases in IN and GN IN.init_biases(0.2) GN.init_biases(0.2) ######################### # INITIALIZE THE GIPAIR # ######################### osm_params = {} osm_params['x_type'] = 'bernoulli' osm_params['xt_transform'] = 'sigmoid' osm_params['logvar_bound'] = LOGVAR_BOUND OSM = OneStageModel(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, \ p_x_given_z=GN, q_z_given_x=IN, \ x_dim=data_dim, z_dim=PRIOR_DIM, params=osm_params) OSM.set_lam_l2w(1e-5) safe_mean = (0.9 * Xtr_mean) + 0.05 safe_mean_logit = np.log(safe_mean / (1.0 - safe_mean)) OSM.set_output_bias(safe_mean_logit) OSM.set_input_bias(-Xtr_mean) ###################### # BASIC VAE TRAINING # ###################### out_file = open(RESULT_PATH + "pt_osm_results.txt", 'wb') # Set initial learning rate and basic SGD hyper parameters obs_costs = np.zeros((batch_size, )) costs = [0. for i in range(10)] learn_rate = 0.0005 for i in range(150000): scale = min(1.0, float(i) / 10000.0) if ((i > 1) and ((i % 20000) == 0)): learn_rate = learn_rate * 0.9 # do a minibatch update of the model, and compute some costs tr_idx = npr.randint(low=0, high=tr_samples, size=(batch_size, )) Xd_batch = Xtr.take(tr_idx, axis=0) Xc_batch = 0.0 * Xd_batch Xm_batch = 0.0 * Xd_batch # do a minibatch update of the model, and compute some costs OSM.set_sgd_params(lr_1=(scale * learn_rate), mom_1=0.5, mom_2=0.98) OSM.set_lam_nll(1.0) OSM.set_lam_kld(lam_kld_1=(1.0 + (scale * (lam_kld - 1.0))), lam_kld_2=0.0) result = OSM.train_joint(Xd_batch, Xc_batch, Xm_batch, batch_reps) costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 1000) == 0): # record and then reset the cost trackers costs = [(v / 1000.0) for v in costs] str_1 = "-- batch {0:d} --".format(i) str_2 = " joint_cost: {0:.4f}".format(costs[0]) str_3 = " nll_cost : {0:.4f}".format(costs[1]) str_4 = " kld_cost : {0:.4f}".format(costs[2]) str_5 = " reg_cost : {0:.4f}".format(costs[3]) costs = [0.0 for v in costs] # print out some diagnostic information joint_str = "\n".join([str_1, str_2, str_3, str_4, str_5]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() if ((i % 2000) == 0): Xva = row_shuffle(Xva) model_samps = OSM.sample_from_prior(500) file_name = RESULT_PATH + "pt_osm_samples_b{0:d}_XG.png".format(i) utils.visualize_samples(model_samps, file_name, num_rows=20) # compute information about free-energy on validation set file_name = RESULT_PATH + "pt_osm_free_energy_b{0:d}.png".format(i) fe_terms = OSM.compute_fe_terms(Xva[0:2500], 20) fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1]) fe_str = " nll_bound : {0:.4f}".format(fe_mean) print(fe_str) out_file.write(fe_str + "\n") utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \ x_label='Posterior KLd', y_label='Negative Log-likelihood') # compute information about posterior KLds on validation set file_name = RESULT_PATH + "pt_osm_post_klds_b{0:d}.png".format(i) post_klds = OSM.compute_post_klds(Xva[0:2500]) post_dim_klds = np.mean(post_klds, axis=0) utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, \ file_name) if ((i % 5000) == 0): IN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_b{0:d}_IN.pkl".format(i)) GN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_b{0:d}_GN.pkl".format(i)) IN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_IN.pkl") GN.save_to_file(f_name=RESULT_PATH + "pt_osm_params_GN.pkl") return
def test_gip_sigma_scale_mnist(): from LogPDFs import cross_validate_sigma # Simple test code, to check that everything is basically functional. print("TESTING...") # Initialize a source of randomness rng = np.random.RandomState(12345) # Load some data to train/validate/test with dataset = "data/mnist.pkl.gz" datasets = load_udm(dataset, zero_mean=False) Xtr = datasets[0][0] Xtr = Xtr.get_value(borrow=False) Xva = datasets[2][0] Xva = Xva.get_value(borrow=False) print("Xtr.shape: {0:s}, Xva.shape: {1:s}".format(str(Xtr.shape), str(Xva.shape))) # get and set some basic dataset information tr_samples = Xtr.shape[0] batch_size = 100 Xtr_mean = np.mean(Xtr, axis=0, keepdims=True) Xtr_mean = (0.0 * Xtr_mean) + np.mean(Xtr) Xc_mean = np.repeat(Xtr_mean, batch_size, axis=0).astype(theano.config.floatX) # Symbolic inputs Xd = T.matrix(name="Xd") Xc = T.matrix(name="Xc") Xm = T.matrix(name="Xm") Xt = T.matrix(name="Xt") # Load inferencer and generator from saved parameters gn_fname = "MNIST_WALKOUT_TEST_MED_KLD/pt_osm_params_b80000_GN.pkl" in_fname = "MNIST_WALKOUT_TEST_MED_KLD/pt_osm_params_b80000_IN.pkl" IN = load_infnet_from_file(f_name=in_fname, rng=rng, Xd=Xd) GN = load_infnet_from_file(f_name=gn_fname, rng=rng, Xd=Xd) x_dim = IN.shared_layers[0].in_dim z_dim = IN.mu_layers[-1].out_dim # construct a GIPair with the loaded InfNet and GenNet osm_params = {} osm_params["x_type"] = "gaussian" osm_params["xt_transform"] = "sigmoid" osm_params["logvar_bound"] = LOGVAR_BOUND OSM = OneStageModel( rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, p_x_given_z=GN, q_z_given_x=IN, x_dim=x_dim, z_dim=z_dim, params=osm_params ) # compute variational likelihood bound and its sub-components Xva = row_shuffle(Xva) Xb = Xva[0:5000] file_name = "AX_MNIST_MAX_KLD_POST_KLDS.png" post_klds = OSM.compute_post_klds(Xb) post_dim_klds = np.mean(post_klds, axis=0) utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, file_name) # compute information about free-energy on validation set file_name = "AX_MNIST_MAX_KLD_FREE_ENERGY.png" fe_terms = OSM.compute_fe_terms(Xb, 20) utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, x_label="Posterior KLd", y_label="Negative Log-likelihood") # bound_results = OSM.compute_ll_bound(Xva) # ll_bounds = bound_results[0] # post_klds = bound_results[1] # log_likelihoods = bound_results[2] # max_lls = bound_results[3] # print("mean ll bound: {0:.4f}".format(np.mean(ll_bounds))) # print("mean posterior KLd: {0:.4f}".format(np.mean(post_klds))) # print("mean log-likelihood: {0:.4f}".format(np.mean(log_likelihoods))) # print("mean max log-likelihood: {0:.4f}".format(np.mean(max_lls))) # print("min ll bound: {0:.4f}".format(np.min(ll_bounds))) # print("max posterior KLd: {0:.4f}".format(np.max(post_klds))) # print("min log-likelihood: {0:.4f}".format(np.min(log_likelihoods))) # print("min max log-likelihood: {0:.4f}".format(np.min(max_lls))) # # compute some information about the approximate posteriors # post_stats = OSM.compute_post_stats(Xva, 0.0*Xva, 0.0*Xva) # all_post_klds = np.sort(post_stats[0].ravel()) # post KLds for each obs and dim # obs_post_klds = np.sort(post_stats[1]) # summed post KLds for each obs # post_dim_klds = post_stats[2] # average post KLds for each post dim # post_dim_vars = post_stats[3] # average squared mean for each post dim # utils.plot_line(np.arange(all_post_klds.shape[0]), all_post_klds, "AAA_ALL_POST_KLDS.png") # utils.plot_line(np.arange(obs_post_klds.shape[0]), obs_post_klds, "AAA_OBS_POST_KLDS.png") # utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, "AAA_POST_DIM_KLDS.png") # utils.plot_stem(np.arange(post_dim_vars.shape[0]), post_dim_vars, "AAA_POST_DIM_VARS.png") # draw many samples from the GIP for i in range(5): tr_idx = npr.randint(low=0, high=tr_samples, size=(100,)) Xd_batch = Xtr.take(tr_idx, axis=0) Xs = [] for row in range(3): Xs.append([]) for col in range(3): sample_lists = OSM.sample_from_chain(Xd_batch[0:10, :], loop_iters=100, sigma_scale=1.0) Xs[row].append(group_chains(sample_lists["data samples"])) Xs, block_im_dim = block_video(Xs, (28, 28), (3, 3)) to_video(Xs, block_im_dim, "AX_MNIST_MAX_KLD_CHAIN_VIDEO_{0:d}.avi".format(i), frame_rate=10) file_name = "AX_MNIST_MAX_KLD_PRIOR_SAMPLE.png" Xs = OSM.sample_from_prior(20 * 20) utils.visualize_samples(Xs, file_name, num_rows=20) # # test Parzen density estimator built from prior samples # Xs = OSM.sample_from_prior(10000) # [best_sigma, best_ll, best_lls] = \ # cross_validate_sigma(Xs, Xva, [0.12, 0.14, 0.15, 0.16, 0.18], 20) # sort_idx = np.argsort(best_lls) # sort_idx = sort_idx[0:400] # utils.plot_line(np.arange(sort_idx.shape[0]), best_lls[sort_idx], "A_MNIST_MAX_KLD_BEST_LLS_1.png") # utils.visualize_samples(Xva[sort_idx], "A_MNIST_MAX_KLD_BAD_DIGITS_1.png", num_rows=20) return
def test_with_model_init(): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = to_fX(datasets[0][0]) Xva = to_fX(datasets[1][0]) Ytr = datasets[0][1] Yva = datasets[1][1] Xtr_class_groups = make_class_groups(Xtr, Ytr) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 300 BD = lambda ary: binarize_data(ary) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ obs_dim = Xtr.shape[1] z_dim = 32 h_dim = 100 ir_steps = 2 init_scale = 1.0 x_type = 'bernoulli' # some InfNet instances to build the TwoStageModel from x_in = T.matrix('x_in') x_pos = T.matrix('x_pos') y_in = T.lvector('y_in') ################# # p_hi_given_si # ################# params = {} shared_config = [obs_dim, 500, 500] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_hi_given_si = InfNet(rng=rng, Xd=x_in, \ params=params, shared_param_dicts=None) p_hi_given_si.init_biases(0.2) ###################### # p_sip1_given_si_hi # ###################### params = {} shared_config = [(h_dim + obs_dim), 500, 500] top_config = [shared_config[-1], obs_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_sip1_given_si_hi = InfNet(rng=rng, Xd=x_in, \ params=params, shared_param_dicts=None) p_sip1_given_si_hi.init_biases(0.2) ################ # p_s0_given_z # ################ params = {} shared_config = [z_dim, 500, 500] top_config = [shared_config[-1], obs_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_s0_given_z = InfNet(rng=rng, Xd=x_in, \ params=params, shared_param_dicts=None) p_s0_given_z.init_biases(0.2) ############### # q_z_given_x # ############### params = {} shared_config = [obs_dim, (500, 4), (500, 4)] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.2 params['hid_drop'] = 0.5 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_z_given_x = InfNet(rng=rng, Xd=x_in, \ params=params, shared_param_dicts=None) q_z_given_x.init_biases(0.0) ################### # q_hi_given_x_si # ################### params = {} shared_config = [(obs_dim + obs_dim), 800, 800] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_hi_given_x_si = InfNet(rng=rng, Xd=x_in, \ params=params, shared_param_dicts=None) q_hi_given_x_si.init_biases(0.2) ################################################################ # Define parameters for the MultiStageModel, and initialize it # ################################################################ print("Building the MultiStageModel...") msm_params = {} msm_params['x_type'] = x_type msm_params['obs_transform'] = 'sigmoid' MSM = MultiStageModelSS(rng=rng, \ x_in=x_in, x_pos=x_pos, y_in=y_in, \ p_s0_given_z=p_s0_given_z, \ p_hi_given_si=p_hi_given_si, \ p_sip1_given_si_hi=p_sip1_given_si_hi, \ q_z_given_x=q_z_given_x, \ q_hi_given_x_si=q_hi_given_x_si, \ class_count=10, \ obs_dim=obs_dim, z_dim=z_dim, h_dim=h_dim, \ ir_steps=ir_steps, params=msm_params) MSM.set_lam_class(lam_class=20.0) MSM.set_lam_nll(lam_nll=1.0) MSM.set_lam_kld(lam_kld_z=1.0, lam_kld_q2p=0.9, \ lam_kld_p2q=0.1) MSM.set_lam_l2w(1e-4) MSM.set_drop_rate(0.0) MSM.q_hi_given_x_si.set_bias_noise(0.0) MSM.p_hi_given_si.set_bias_noise(0.0) MSM.p_sip1_given_si_hi.set_bias_noise(0.0) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ out_file = open("MSS_A_RESULTS.txt", 'wb') costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(250000): scale = min(1.0, ((i+1) / 2000.0)) if (((i + 1) % 10000) == 0): learn_rate = learn_rate * 0.95 if (i > 20000): momentum = 0.90 else: momentum = 0.50 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr, Ytr = row_shuffle(Xtr, Ytr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update MSM.set_sgd_params(lr_1=scale*learn_rate, lr_2=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.99) MSM.set_train_switch(1.0) # perform a minibatch update and record the cost for this batch Xi_tr = Xtr.take(batch_idx, axis=0) Yi_tr = Ytr.take(batch_idx, axis=0) Xp_tr, Xn_tr = sample_class_groups(Yi_tr, Xtr_class_groups) result = MSM.train_joint(BD(Xi_tr), BD(Xp_tr), Yi_tr) costs = [(costs[j] + result[j]) for j in range(len(result)-1)] # output useful information about training progress if ((i % 500) == 0): costs = [(v / 500.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost : {0:.4f}".format(costs[0]) str3 = " class_cost : {0:.4f}".format(costs[1]) str4 = " nll_cost : {0:.4f}".format(costs[2]) str5 = " kld_cost : {0:.4f}".format(costs[3]) str6 = " reg_cost : {0:.4f}".format(costs[4]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if (((i % 2000) == 0) or ((i < 10000) and ((i % 1000) == 0))): # Get some validation samples for computing diagnostics Xva, Yva = row_shuffle(Xva, Yva) Xb_va = Xva[0:2500] Yb_va = Yva[0:2500] # draw some independent random samples from the model samp_count = 200 model_samps = MSM.sample_from_prior(samp_count) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "MSS_A_SAMPLES_IND_b{0:d}.png".format(i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # draw some conditional random samples from the model Xs = Xb_va[0:50] # only use validation set samples Xs = np.repeat(Xs, 4, axis=0) samp_count = Xs.shape[0] utils.visualize_samples(seq_samps, file_name, num_rows=20) # draw some conditional random samples from the model model_samps = MSM.sample_from_input(BD(Xs), guided_decoding=False) model_samps.append(Xs) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "MSS_A_SAMPLES_CND_UD_b{0:d}.png".format(i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # compute information about posterior KLds on validation set raw_costs = MSM.compute_raw_costs(BD(Xb_va), BD(Xb_va)) init_nll, init_kld, q2p_kld, p2q_kld, step_nll, step_kld = raw_costs file_name = "MSS_A_H0_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(init_kld.shape[1]), \ np.mean(init_kld, axis=0), file_name) file_name = "MSS_A_HI_Q2P_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(q2p_kld.shape[1]), \ np.mean(q2p_kld, axis=0), file_name) file_name = "MSS_A_HI_P2Q_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(p2q_kld.shape[1]), \ np.mean(p2q_kld, axis=0), file_name) # draw weights for the initial encoder/classifier file_name = "MSS_A_QZX_WEIGHTS_b{0:d}.png".format(i) W = q_z_given_x.shared_layers[0].W.get_value(borrow=False).T utils.visualize_samples(W, file_name, num_rows=20) # compute free-energy terms on training samples fe_terms = MSM.compute_fe_terms(BD(Xtr[0:2500]), BD(Xtr[0:2500]), 30) fe_nll = np.mean(fe_terms[0]) fe_kld = np.mean(fe_terms[1]) fe_joint = fe_nll + fe_kld joint_str = " vfe-tr: {0:.4f}, nll: ({1:.4f}, {2:.4f}, {3:.4f}), kld: ({4:.4f}, {5:.4f}, {6:.4f})".format( \ fe_joint, fe_nll, np.min(fe_terms[0]), np.max(fe_terms[0]), fe_kld, np.min(fe_terms[1]), np.max(fe_terms[1])) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() # compute free-energy terms on validation samples fe_terms = MSM.compute_fe_terms(BD(Xb_va), BD(Xb_va), 30) fe_nll = np.mean(fe_terms[0]) fe_kld = np.mean(fe_terms[1]) fe_joint = fe_nll + fe_kld joint_str = " vfe-va: {0:.4f}, nll: ({1:.4f}, {2:.4f}, {3:.4f}), kld: ({4:.4f}, {5:.4f}, {6:.4f})".format( \ fe_joint, fe_nll, np.min(fe_terms[0]), np.max(fe_terms[0]), fe_kld, np.min(fe_terms[1]), np.max(fe_terms[1])) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() # compute multi-sample estimate of classification error err_rate, err_idx, y_preds = MSM.class_error(Xb_va, Yb_va, \ samples=30, prep_func=BD) joint_str = " va-class-error: {0:.4f}".format(err_rate) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() # draw some conditional random samples from the model Xs = Xb_va[err_idx] # use validation samples with class errors if (Xs.shape[0] > 50): Xs = Xs[:50] Xs = np.repeat(Xs, 4, axis=0) if ((Xs.shape[0] % 20) != 0): # round-off the number of error examples, for nice display remainder = Xs.shape[0] % 20 Xs = Xs[:-remainder] samp_count = Xs.shape[0] # draw some conditional random samples from the model model_samps = MSM.sample_from_input(BD(Xs), guided_decoding=False) model_samps.append(Xs) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "MSS_A_SAMPLES_CND_ERR_b{0:d}.png".format(i) utils.visualize_samples(seq_samps, file_name, num_rows=20)
def test_with_model_init(): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, zero_mean=False) Xtr_shared = datasets[0][0] Xva_shared = datasets[1][0] Xtr = Xtr_shared.get_value(borrow=False).astype(theano.config.floatX) Xva = Xva_shared.get_value(borrow=False).astype(theano.config.floatX) tr_samples = Xtr.shape[0] batch_size = 500 batch_reps = 1 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ obs_dim = Xtr.shape[1] z_rnn_dim = 25 z_obs_dim = 5 jnt_dim = obs_dim + z_rnn_dim h_dim = 100 x_type = 'bernoulli' prior_sigma = 1.0 # some InfNet instances to build the TwoStageModel from X_sym = T.matrix('X_sym') ######################## # p_s0_obs_given_z_obs # ######################## params = {} shared_config = [z_obs_dim, 250, 250] top_config = [shared_config[-1], obs_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = softplus_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 1e-3 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_s0_obs_given_z_obs = InfNet(rng=rng, Xd=X_sym, prior_sigma=prior_sigma, \ params=params, shared_param_dicts=None) p_s0_obs_given_z_obs.init_biases(0.2) ################# # p_hi_given_si # ################# params = {} shared_config = [jnt_dim, 500, 500] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = softplus_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_hi_given_si = InfNet(rng=rng, Xd=X_sym, prior_sigma=prior_sigma, \ params=params, shared_param_dicts=None) p_hi_given_si.init_biases(0.2) ###################### # p_sip1_given_si_hi # ###################### params = {} shared_config = [(h_dim + z_rnn_dim), 500, 500] top_config = [shared_config[-1], obs_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = softplus_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_sip1_given_si_hi = InfNet(rng=rng, Xd=X_sym, prior_sigma=prior_sigma, \ params=params, shared_param_dicts=None) p_sip1_given_si_hi.init_biases(0.2) ############### # q_z_given_x # ############### params = {} shared_config = [obs_dim, 250, 250] top_config = [shared_config[-1], (z_rnn_dim + z_obs_dim)] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = softplus_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_z_given_x = InfNet(rng=rng, Xd=X_sym, prior_sigma=prior_sigma, \ params=params, shared_param_dicts=None) q_z_given_x.init_biases(0.2) ################### # q_hi_given_x_si # ################### params = {} shared_config = [(obs_dim + jnt_dim), 500, 500] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = softplus_actfun params['init_scale'] = 1.2 params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_hi_given_x_si = InfNet(rng=rng, Xd=X_sym, prior_sigma=prior_sigma, \ params=params, shared_param_dicts=None) q_hi_given_x_si.init_biases(0.2) ################################################################ # Define parameters for the MultiStageModel, and initialize it # ################################################################ print("Building the MultiStageModel...") msm_params = {} msm_params['x_type'] = x_type msm_params['obs_transform'] = 'sigmoid' MSM = MultiStageModel(rng=rng, x_in=X_sym, \ p_s0_obs_given_z_obs=p_s0_obs_given_z_obs, \ p_hi_given_si=p_hi_given_si, \ p_sip1_given_si_hi=p_sip1_given_si_hi, \ q_z_given_x=q_z_given_x, \ q_hi_given_x_si=q_hi_given_x_si, \ obs_dim=obs_dim, z_rnn_dim=z_rnn_dim, z_obs_dim=z_obs_dim, \ h_dim=h_dim, model_init_obs=False, model_init_rnn=True, \ ir_steps=3, params=msm_params) obs_mean = (0.9 * np.mean(Xtr, axis=0)) + 0.05 obs_mean_logit = np.log(obs_mean / (1.0 - obs_mean)) MSM.set_input_bias(-obs_mean) MSM.set_obs_bias(0.1*obs_mean_logit) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ costs = [0. for i in range(10)] learn_rate = 0.003 momentum = 0.5 for i in range(300000): scale = min(1.0, ((i+1) / 5000.0)) l1l2_weight = 1.0 #min(1.0, ((i+1) / 2500.0)) if (((i + 1) % 10000) == 0): learn_rate = learn_rate * 0.92 if (i > 100000): momentum = 0.80 if (i > 50000): momentum = 0.65 else: momentum = 0.50 # randomly sample a minibatch tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,)) Xb = binarize_data(Xtr.take(tr_idx, axis=0)) Xb = Xb.astype(theano.config.floatX) # set sgd and objective function hyperparams for this update MSM.set_sgd_params(lr_1=scale*learn_rate, lr_2=scale*learn_rate, \ mom_1=(scale*momentum), mom_2=0.99) MSM.set_train_switch(1.0) MSM.set_l1l2_weight(l1l2_weight) MSM.set_lam_nll(lam_nll=1.0) MSM.set_lam_kld(lam_kld_1=1.0, lam_kld_2=1.0) MSM.set_lam_l2w(1e-5) MSM.set_kzg_weight(0.01) # perform a minibatch update and record the cost for this batch result = MSM.train_joint(Xb, batch_reps) costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 500) == 0): costs = [(v / 500.0) for v in costs] print("-- batch {0:d} --".format(i)) print(" joint_cost: {0:.4f}".format(costs[0])) print(" nll_cost : {0:.4f}".format(costs[1])) print(" kld_cost : {0:.4f}".format(costs[2])) print(" reg_cost : {0:.4f}".format(costs[3])) costs = [0.0 for v in costs] if (((i % 2000) == 0) or ((i < 10000) and ((i % 1000) == 0))): Xva = row_shuffle(Xva) # draw some independent random samples from the model samp_count = 200 model_samps = MSM.sample_from_prior(samp_count) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "MZ_SAMPLES_b{0:d}.png".format(i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # visualize some important weights in the model file_name = "MZ_INF_1_WEIGHTS_b{0:d}.png".format(i) W = MSM.inf_1_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MZ_INF_2_WEIGHTS_b{0:d}.png".format(i) W = MSM.inf_2_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MZ_GEN_1_WEIGHTS_b{0:d}.png".format(i) W = MSM.gen_1_weights.get_value(borrow=False) utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MZ_GEN_2_WEIGHTS_b{0:d}.png".format(i) W = MSM.gen_2_weights.get_value(borrow=False) utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "MZ_GEN_INF_WEIGHTS_b{0:d}.png".format(i) W = MSM.gen_inf_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) # compute information about posterior KLds on validation set post_klds = MSM.compute_post_klds(Xva[0:5000]) file_name = "MZ_H0_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(post_klds[0].shape[1]), \ np.mean(post_klds[0], axis=0), file_name) file_name = "MZ_HI_COND_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(post_klds[1].shape[1]), \ np.mean(post_klds[1], axis=0), file_name) file_name = "MZ_HI_GLOB_KLDS_b{0:d}.png".format(i) utils.plot_stem(np.arange(post_klds[2].shape[1]), \ np.mean(post_klds[2], axis=0), file_name) # compute information about free-energy on validation set file_name = "MZ_FREE_ENERGY_b{0:d}.png".format(i) fe_terms = MSM.compute_fe_terms(binarize_data(Xva[0:5000]), 20) fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1]) print(" nll_bound : {0:.4f}".format(fe_mean)) utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \ x_label='Posterior KLd', y_label='Negative Log-likelihood') return
def test_gip_sigma_scale_mnist(): from LogPDFs import cross_validate_sigma # Simple test code, to check that everything is basically functional. print("TESTING...") # Initialize a source of randomness rng = np.random.RandomState(12345) # Load some data to train/validate/test with dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, zero_mean=False) Xtr = datasets[0][0] Xtr = Xtr.get_value(borrow=False) Xva = datasets[2][0] Xva = Xva.get_value(borrow=False) print("Xtr.shape: {0:s}, Xva.shape: {1:s}".format(str(Xtr.shape), str(Xva.shape))) # get and set some basic dataset information tr_samples = Xtr.shape[0] batch_size = 100 Xtr_mean = np.mean(Xtr, axis=0, keepdims=True) Xtr_mean = (0.0 * Xtr_mean) + np.mean(Xtr) Xc_mean = np.repeat(Xtr_mean, batch_size, axis=0).astype(theano.config.floatX) # Symbolic inputs Xd = T.matrix(name='Xd') Xc = T.matrix(name='Xc') Xm = T.matrix(name='Xm') Xt = T.matrix(name='Xt') # Load inferencer and generator from saved parameters gn_fname = "MNIST_WALKOUT_TEST_MED_KLD/pt_osm_params_b80000_GN.pkl" in_fname = "MNIST_WALKOUT_TEST_MED_KLD/pt_osm_params_b80000_IN.pkl" IN = load_infnet_from_file(f_name=in_fname, rng=rng, Xd=Xd) GN = load_infnet_from_file(f_name=gn_fname, rng=rng, Xd=Xd) x_dim = IN.shared_layers[0].in_dim z_dim = IN.mu_layers[-1].out_dim # construct a GIPair with the loaded InfNet and GenNet osm_params = {} osm_params['x_type'] = 'gaussian' osm_params['xt_transform'] = 'sigmoid' osm_params['logvar_bound'] = LOGVAR_BOUND OSM = OneStageModel(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, \ p_x_given_z=GN, q_z_given_x=IN, \ x_dim=x_dim, z_dim=z_dim, params=osm_params) # compute variational likelihood bound and its sub-components Xva = row_shuffle(Xva) Xb = Xva[0:5000] file_name = "AX_MNIST_MAX_KLD_POST_KLDS.png" post_klds = OSM.compute_post_klds(Xb) post_dim_klds = np.mean(post_klds, axis=0) utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, \ file_name) # compute information about free-energy on validation set file_name = "AX_MNIST_MAX_KLD_FREE_ENERGY.png" fe_terms = OSM.compute_fe_terms(Xb, 20) utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \ x_label='Posterior KLd', y_label='Negative Log-likelihood') # bound_results = OSM.compute_ll_bound(Xva) # ll_bounds = bound_results[0] # post_klds = bound_results[1] # log_likelihoods = bound_results[2] # max_lls = bound_results[3] # print("mean ll bound: {0:.4f}".format(np.mean(ll_bounds))) # print("mean posterior KLd: {0:.4f}".format(np.mean(post_klds))) # print("mean log-likelihood: {0:.4f}".format(np.mean(log_likelihoods))) # print("mean max log-likelihood: {0:.4f}".format(np.mean(max_lls))) # print("min ll bound: {0:.4f}".format(np.min(ll_bounds))) # print("max posterior KLd: {0:.4f}".format(np.max(post_klds))) # print("min log-likelihood: {0:.4f}".format(np.min(log_likelihoods))) # print("min max log-likelihood: {0:.4f}".format(np.min(max_lls))) # # compute some information about the approximate posteriors # post_stats = OSM.compute_post_stats(Xva, 0.0*Xva, 0.0*Xva) # all_post_klds = np.sort(post_stats[0].ravel()) # post KLds for each obs and dim # obs_post_klds = np.sort(post_stats[1]) # summed post KLds for each obs # post_dim_klds = post_stats[2] # average post KLds for each post dim # post_dim_vars = post_stats[3] # average squared mean for each post dim # utils.plot_line(np.arange(all_post_klds.shape[0]), all_post_klds, "AAA_ALL_POST_KLDS.png") # utils.plot_line(np.arange(obs_post_klds.shape[0]), obs_post_klds, "AAA_OBS_POST_KLDS.png") # utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, "AAA_POST_DIM_KLDS.png") # utils.plot_stem(np.arange(post_dim_vars.shape[0]), post_dim_vars, "AAA_POST_DIM_VARS.png") # draw many samples from the GIP for i in range(5): tr_idx = npr.randint(low=0, high=tr_samples, size=(100, )) Xd_batch = Xtr.take(tr_idx, axis=0) Xs = [] for row in range(3): Xs.append([]) for col in range(3): sample_lists = OSM.sample_from_chain(Xd_batch[0:10,:], loop_iters=100, \ sigma_scale=1.0) Xs[row].append(group_chains(sample_lists['data samples'])) Xs, block_im_dim = block_video(Xs, (28, 28), (3, 3)) to_video(Xs, block_im_dim, "AX_MNIST_MAX_KLD_CHAIN_VIDEO_{0:d}.avi".format(i), frame_rate=10) file_name = "AX_MNIST_MAX_KLD_PRIOR_SAMPLE.png" Xs = OSM.sample_from_prior(20 * 20) utils.visualize_samples(Xs, file_name, num_rows=20) # # test Parzen density estimator built from prior samples # Xs = OSM.sample_from_prior(10000) # [best_sigma, best_ll, best_lls] = \ # cross_validate_sigma(Xs, Xva, [0.12, 0.14, 0.15, 0.16, 0.18], 20) # sort_idx = np.argsort(best_lls) # sort_idx = sort_idx[0:400] # utils.plot_line(np.arange(sort_idx.shape[0]), best_lls[sort_idx], "A_MNIST_MAX_KLD_BEST_LLS_1.png") # utils.visualize_samples(Xva[sort_idx], "A_MNIST_MAX_KLD_BAD_DIGITS_1.png", num_rows=20) return
def test_mnist(step_type='add', imp_steps=6, occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_IS{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, imp_steps, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) Xtr, Xva, Xte = load_binarized_mnist(data_path='./data/') Xtr = np.vstack((Xtr, Xva)) Xva = Xte #del Xte tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] ########################## # Get some training data # ########################## # rng = np.random.RandomState(1234) # dataset = 'data/mnist.pkl.gz' # datasets = load_udm(dataset, as_shared=False, zero_mean=False) # Xtr = datasets[0][0] # Xva = datasets[1][0] # Xte = datasets[2][0] # # Merge validation set and training set, and test on test set. # #Xtr = np.concatenate((Xtr, Xva), axis=0) # #Xva = Xte # Xtr = to_fX(shift_and_scale_into_01(Xtr)) # Xva = to_fX(shift_and_scale_into_01(Xva)) # tr_samples = Xtr.shape[0] # va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] s_dim = x_dim h_dim = 50 z_dim = 100 init_scale = 0.6 x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') ############### # p_h_given_x # ############### params = {} shared_config = [x_dim, 250] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = 'xg' #init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_h_given_x = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_h_given_x.init_biases(0.0) ################ # p_s0_given_h # ################ params = {} shared_config = [h_dim, 250] output_config = [s_dim, s_dim, s_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = 'xg' #init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_s0_given_h = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_s0_given_h.init_biases(0.0) ################# # p_zi_given_xi # ################# params = {} shared_config = [(x_dim + x_dim), 500, 500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_zi_given_xi.init_biases(0.0) ################### # p_sip1_given_zi # ################### params = {} shared_config = [z_dim, 500, 500] output_config = [s_dim, s_dim, s_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_sip1_given_zi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_sip1_given_zi.init_biases(0.0) ################ # p_x_given_si # ################ params = {} shared_config = [s_dim] output_config = [x_dim, x_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_x_given_si = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_x_given_si.init_biases(0.0) ############### # q_h_given_x # ############### params = {} shared_config = [x_dim, 250] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = 'xg' #init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_h_given_x = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_h_given_x.init_biases(0.0) ################# # q_zi_given_xi # ################# params = {} shared_config = [(x_dim + x_dim), 500, 500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_zi_given_xi.init_biases(0.0) ########################################################### # Define parameters for the GPSImputer, and initialize it # ########################################################### print("Building the GPSImputer...") gpsi_params = {} gpsi_params['x_dim'] = x_dim gpsi_params['h_dim'] = h_dim gpsi_params['z_dim'] = z_dim gpsi_params['s_dim'] = s_dim # switch between direct construction and construction via p_x_given_si gpsi_params['use_p_x_given_si'] = False gpsi_params['imp_steps'] = imp_steps gpsi_params['step_type'] = step_type gpsi_params['x_type'] = 'bernoulli' gpsi_params['obs_transform'] = 'sigmoid' GPSI = GPSImputerWI(rng=rng, x_in=x_in_sym, x_out=x_out_sym, x_mask=x_mask_sym, \ p_h_given_x=p_h_given_x, \ p_s0_given_h=p_s0_given_h, \ p_zi_given_xi=p_zi_given_xi, \ p_sip1_given_zi=p_sip1_given_zi, \ p_x_given_si=p_x_given_si, \ q_h_given_x=q_h_given_x, \ q_zi_given_xi=q_zi_given_xi, \ params=gpsi_params, \ shared_param_dicts=None) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(250000): scale = min(1.0, ((i+1) / 5000.0)) lam_scale = 1.0 - min(1.0, ((i+1) / 100000.0)) # decays from 1.0->0.0 if (((i + 1) % 15000) == 0): learn_rate = learn_rate * 0.93 if (i > 10000): momentum = 0.90 else: momentum = 0.75 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update GPSI.set_sgd_params(lr=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.98) GPSI.set_train_switch(1.0) GPSI.set_lam_nll(lam_nll=1.0) GPSI.set_lam_kld(lam_kld_p=0.05, lam_kld_q=0.95, \ lam_kld_g=(0.1 * lam_scale), lam_kld_s=(0.1 * lam_scale)) GPSI.set_lam_l2w(1e-5) # perform a minibatch update and record the cost for this batch xb = to_fX( Xtr.take(batch_idx, axis=0) ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = GPSI.train_joint(xi, xo, xm, batch_reps) # do diagnostics and general training tracking costs = [(costs[j] + result[j]) for j in range(len(result)-1)] if ((i % 250) == 0): costs = [(v / 250.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_cost : {0:.4f}".format(costs[2]) str5 = " kld_cost : {0:.4f}".format(costs[3]) str6 = " reg_cost : {0:.4f}".format(costs[4]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[0:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll, kld = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() if ((i % 2000) == 0): GPSI.save_to_file("{}_PARAMS.pkl".format(result_tag)) # Get some validation samples for evaluating model performance xb = to_fX( Xva[0:100] ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) xi = np.repeat(xi, 2, axis=0) xo = np.repeat(xo, 2, axis=0) xm = np.repeat(xm, 2, axis=0) # draw some sample imputations from the model samp_count = xi.shape[0] _, model_samps = GPSI.sample_imputer(xi, xo, xm, use_guide_policy=False) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "{0:s}_samples_ng_b{1:d}.png".format(result_tag, i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # show KLds and NLLs on a step-by-step basis xb = to_fX( Xva[0:1000] ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) step_costs = GPSI.compute_per_step_cost(xi, xo, xm) step_nlls = step_costs[0] step_klds = step_costs[1] step_nums = np.arange(step_nlls.shape[0]) file_name = "{0:s}_NLL_b{1:d}.png".format(result_tag, i) utils.plot_stem(step_nums, step_nlls, file_name) file_name = "{0:s}_KLD_b{1:d}.png".format(result_tag, i) utils.plot_stem(step_nums, step_klds, file_name)