Ejemplo n.º 1
0
def execute(args):
    persistence.connect_existing(os.getcwd())
    last_trial_id = persistence.last_trial_id()
    trial_id = args.trial if args.trial != None else last_trial_id
    if not 1 <= trial_id <= last_trial_id:
        utils.print_msg('inexistent trial id', True)
        sys.exit(1)
    print_trial(persistence.load_trial(trial_id).fetchone())

    if args.modules:
        print_modules(persistence.load_dependencies())

    if args.function_defs:
        print_function_defs(persistence.load('function_def',
                                             trial_id=trial_id))

    if args.environment:
        environment = {
            attr['name']: attr['value']
            for attr in persistence.load('environment_attr', trial_id=trial_id)
        }
        utils.print_map(
            'this trial has been executed under the following environment conditions',
            environment)

    if args.function_activations:
        print_function_activations(
            persistence.load('function_activation',
                             caller_id=None,
                             trial_id=trial_id).fetchone())

    if args.file_accesses:
        print_file_accesses(persistence.load('file_access', trial_id=trial_id))
Ejemplo n.º 2
0
def main():
    with open("maps/map1.txt", "r") as f:
        strs = f.read().split("\n")

    map_grid = generate_map(*strs)
    print(generate_map_descriptor(map_grid))
    print_map(map_grid)
Ejemplo n.º 3
0
def main():
    with open("../maps/sample_arena5.txt", "r") as f:
        strs = f.read().split("\n")

    map_real = generate_map(*strs)
    bot = SimulatorBot(START_POS, Direction.EAST, lambda m: None)
    bot.map = map_real

    exp = Exploration(bot, lambda: None)
    exp.run_exploration()
    print_map(exp.explored_map)
    print_map(map_real)
Ejemplo n.º 4
0
def main():
    with open("maps/map3.txt", "r") as f:
        strs = f.read().split("\n")

    map_test = generate_map(*strs)
    fp = FastestPath(map_test, Direction.EAST, START_POS, GOAL_POS)

    print_map(FastestPath.add_virtual_obstacles(map_test), fp.steps)

    if fp.path_found:
        for i, step in enumerate(fp.steps):
            print("{}.".format(i + 1), step)

        for i, movement in enumerate(fp.movements):
            print("{}.".format(i + 1), movement)
Ejemplo n.º 5
0
# Project site: https://github.com/bravikov/pylee

import utils

x0 = 2
y0 = 12

map_width = 15
map_height = 15

my_map = utils.generate_map(map_width, map_height)

utils.add_obstacle(my_map, 6, 5, 3, 4)

utils.print_map(my_map)

start_location = utils.Location()
start_location.x = x0
start_location.y = y0

locations = [start_location]
weight = 1
while len(locations) > 0:
    nextLocations = []
    for location in locations:
        utils.set_weight(my_map, location, weight)
        nextLocations += utils.get_neighbors(my_map, location)
    utils.print_map(my_map)
    locations = utils.get_zero_weight_unique_locations(my_map, nextLocations)
    weight += 1
Ejemplo n.º 6
0
    def step(self, action_dict):
        actions = []
        for i in range(4):
            if self.agent_names[i] in action_dict:
                actions.append(action_dict[self.agent_names[i]])
                self.stat[i][Metrics(actions[-1]).name] += 1
                self.prev_actions[i].append(action_dict[self.agent_names[i]])

                if list(self.prev_actions[i]) == [4, 4, 4]:
                    self.stat[i][Metrics.TRIPLE_FREE.name] += 1
                elif self.prev_actions[i][1] == 4 and self.prev_actions[i][
                        2] == 4:
                    self.stat[i][Metrics.DOUBLE_FREE.name] += 1
            else:
                actions.append(Action.ACTION_FREE.value)

        if self.is_render:
            print(
                f"Action: {[constants.Action(action).name for action in actions]}"
            )
            utils.print_map(self.prev_raw_obs)

        alive_agents = list(action_dict.keys())
        raw_obs = self.env.step(','.join([str(action) for action in actions]))

        obs = utils.featurize_v2(self.agent_names, alive_agents, raw_obs,
                                 self.total_gold, self.prev_actions)
        rewards, win_loss = self._rewards_v3(alive_agents, raw_obs.players,
                                             raw_obs)

        dones = {}
        infos = {}
        self.episode_len += 1

        for i, agent_name in enumerate(self.agent_names):
            if agent_name in alive_agents:
                infos[self.agent_names[i]] = {}

                self.stat[i][
                    Metrics.ENERGY.name] += raw_obs.players[i]["energy"]

                if raw_obs.players[i][
                        "status"] != constants.Status.STATUS_PLAYING.value:
                    self.stat[i][Metrics.ENERGY.name] /= (self.episode_len + 1)
                    infos[self.agent_names[i]]["win"] = win_loss[
                        self.agent_names[i]]
                    infos[self.
                          agent_names[i]]["gold"] = raw_obs.players[i]["score"]
                    infos[self.agent_names[i]]["status"] = constants.Status(
                        raw_obs.players[i]["status"])
                    infos[self.agent_names[i]]["metrics"] = self.stat[i]
                    infos[self.agent_names[i]]["total_gold"] = self.total_gold
                    dones[self.agent_names[i]] = True
                    self.count_done += 1

        dones["__all__"] = self.count_done == 4
        self.prev_raw_obs = copy.deepcopy(raw_obs)

        if self.is_render:
            print(f"rewards: {rewards}")
            print(f"Energy ", end='')
            for i in range(4):
                print(f"({i}):{raw_obs.players[i]['energy']:5}\t", end='')
            print()

        return obs, rewards, dones, infos
Ejemplo n.º 7
0
# Send the request to the game environment (GAME_SOCKET_DUMMY.py)

try:
    # Initialize environment
    minerEnv = MinerEnv(HOST, PORT)
    minerEnv.start()  # Connect to the game

    # minerEnv.send_map_info(request)
    minerEnv.reset()
    last_3_actions = deque([4, 4, 4], maxlen=3)
    obs, raw_obs = minerEnv.get_state_v2(
        last_3_actions)  ##Getting an initial state

    while not minerEnv.check_terminate():
        try:
            utils.print_map(raw_obs)
            votes = {i: 0 for i in range(6)}
            best_model_act = models[0].predict(obs)
            # votes[best_model_act] += 1
            for model in models:
                votes[model.predict(obs)] += 1

            choosen_move = None
            max_count = -1
            for move in votes:
                if votes[move] > max_count:
                    choosen_move = move
                    max_count = votes[move]

            if votes[best_model_act] == max_count:
                choosen_move = best_model_act