Ejemplo n.º 1
0
def data_loader_notredame(data_path, name, dtype, device):

    edges_path = os.path.join(data_path, name + '_Edges.txt')
    edges = np.genfromtxt(edges_path, delimiter=',')
    edges = (np.array(edges) - 1).astype('int64')

    Qabs_path = os.path.join(data_path, name + '_Qabs.txt')
    Qabs = np.genfromtxt(Qabs_path, delimiter=',')

    Qrel_path = os.path.join(data_path, name + '_Qrel.txt')
    Qrel = np.genfromtxt(Qrel_path, delimiter=',')

    Qrel = tr.tensor(Qrel, dtype=dtype, device=device).unsqueeze(
        1)  # do not assigne to gpu for now (this matrix can be huge)
    Qabs = tr.tensor(Qabs, dtype=dtype, device=device).unsqueeze(1)
    Qabs[:, :, 1:] *= -1.

    G, C = make_graphs(edges)

    #I = np.array(list(G.edges()))
    degree = np.array((G.degree()))
    max_index = np.argmax(degree[:, 1])

    G, edges, Qabs = swap_nodes(G, edges, Qabs, 0, max_index)

    # Additional formatting  : N x P x d
    N, P, _ = Qabs.shape
    Nrel, Prel, _ = Qrel.shape
    # rotate all absolute poses so that the first camera becomes the reference
    Qabs = utils.quaternion_X_times_Y_inv(
        Qabs, Qabs[0, :, :].unsqueeze(0).repeat(N, 1, 1))
    wabs = (1. / P) * tr.ones([N, P], dtype=dtype, device=device)
    wrel = (1. / Prel) * tr.ones([Nrel, Prel], dtype=dtype, device=device)
    if nx.is_connected(C):
        return edges, G, Qrel, wrel, Qabs, wabs, None
Ejemplo n.º 2
0
def data_loader_artsquad(data_path, name, dtype, device):

    edges_path = os.path.join(data_path, name + '_Edges.txt')
    edges = np.genfromtxt(edges_path, delimiter=',')
    edges = (np.array(edges) - 2).astype('int64')

    Qabs_path = os.path.join(data_path, name + '_Qabs.txt')
    Qabs = np.genfromtxt(Qabs_path, delimiter=',')

    Qrel_path = os.path.join(data_path, name + '_Qrel.txt')
    Qrel = np.genfromtxt(Qrel_path, delimiter=',')

    Qrel = tr.tensor(Qrel, dtype=dtype, device=device).unsqueeze(
        1)  # do not assigne to gpu for now (this matrix can be huge)
    Qabs = tr.tensor(Qabs, dtype=dtype, device=device).unsqueeze(1)
    Qabs = Qabs[1:, :, :]
    Qabs[:, :, 1:] *= -1.

    vals = np.ones(edges.shape[0], dtype=np.double)
    rows = (np.asarray(edges[:, 0])).astype(int)
    cols = (np.asarray(edges[:, 1])).astype(int)
    N = Qabs.shape[0]
    G = np.zeros((N, N))
    G[rows, cols] = vals

    C = nx.from_numpy_matrix(G)
    G = nx.from_numpy_matrix(G, create_using=nx.DiGraph())

    connected_comp = list(nx.connected_components(C))
    #H = G.subgraph(connected_comp[0])
    #Qabs = Qabs[connected_comp[0],:,:]

    connected_comp = list(connected_comp[0])
    indx_1 = tr.norm(Qabs, dim=-1) > 0.5
    indx_1 = indx_1.int()
    indx = tr.zeros([Qabs.shape[0], 1, 1]).int().to(device)
    indx[connected_comp, 0] = 1
    indx = indx_1 * indx
    indx = indx.to(device)
    indx = indx.bool()

    #I = np.array(list(G.edges()))

    # Additional formatting  : N x P x d
    N, P, _ = Qabs.shape
    Nrel, Prel, _ = Qrel.shape
    # rotate all absolute poses so that the first camera becomes the reference
    Qabs = utils.quaternion_X_times_Y_inv(
        Qabs, Qabs[0, :, :].unsqueeze(0).repeat(N, 1, 1))
    wabs = (1. / P) * tr.ones([N, P], dtype=dtype, device=device)
    wrel = (1. / Prel) * tr.ones([Nrel, Prel], dtype=dtype, device=device)

    #if nx.is_connected(C):
    return edges, G, Qrel, wrel, Qabs, wabs, indx
Ejemplo n.º 3
0
    def compute_ratios(self, particles, weights, edges):
        ratios = []
        RM_weights = []
        i = edges[:, 0]
        j = edges[:, 1]
        xi = particles[i, :, :]
        xj = particles[j, :, :]

        if self.grad_type == 'euclidean':
            ratios = utils.forward_quaternion_X_times_Y_inv(xi, xj)
        elif self.grad_type == 'quaternion':
            ratios = utils.quaternion_X_times_Y_inv(xi, xj)
        #normalize = tr.norm(ratios,dim=-1).clone().detach()
        #ratios  = ratios/normalize.unsqueeze(-1)

        #RM_weights = weights[i,:]*weights[j,:]
        N = xi.shape[0]

        RM_weights = weights[0, :].unsqueeze(0).repeat(N, 1)
        #ratios = ratios.clone().detach()
        return ratios, RM_weights
Ejemplo n.º 4
0
def data_loader_shapenet(data_path, name, dtype, device, conjugate=False):

    edges_path = os.path.join(data_path, name + '_Edges.txt')
    edges = np.genfromtxt(edges_path, delimiter=',')
    edges = (np.array(edges) - 1).astype('int64')

    Qabs_path = os.path.join(data_path, name + '_Qabs.txt')
    Qabs = np.genfromtxt(Qabs_path, delimiter=',')

    Qrel_path = os.path.join(data_path, name + '_Qrel.txt')
    Qrel = np.genfromtxt(Qrel_path, delimiter=',')

    Qrel = tr.tensor(Qrel, dtype=dtype, device=device).unsqueeze(
        1)  # do not assigne to gpu for now (this matrix can be huge)
    #Qrel = reshape_flat_tensor(Qrel)
    Qabs = tr.tensor(Qabs, dtype=dtype, device=device).unsqueeze(1)
    #Qabs = Qabs[1:,:,:]
    if conjugate:
        Qabs[:, :, 1:] *= -1.

    # test error to gt

    N, P, _ = Qabs.shape
    Nrel, Prel, _ = Qrel.shape
    wabs = (1. / P) * tr.ones([N, P], dtype=dtype, device=device)
    wrel = (1. / Prel) * tr.ones([Nrel, Prel], dtype=dtype, device=device)

    true_args = make_true_dict(args)
    # true_prior = get_prior(true_args, dtype, device)
    # true_RM_map = get_true_rm_map(true_args, edges,dtype,device)
    # rm, rm_weights = true_RM_map(Qabs, wabs , edges)
    # dist = utils.quaternion_geodesic_distance(rm,Qrel)
    # min_dist,_ = torch.min(dist,dim=-1)
    # avg_best_dist = torch.mean(min_dist,dim=-1)

    G, C = make_graphs(edges)

    #connected_comp = list(nx.connected_components(C))
    #H = G.subgraph(connected_comp[0])
    #Qabs = Qabs[connected_comp[0],:,:]

    #connected_comp =  list(connected_comp[0])
    #Qabs = Qabs[connected_comp,:,:]

    #I = np.array(list(G.edges()))
    degree = np.array((G.degree()))
    max_index = np.argmax(degree[:, 1])

    G, edges, Qabs = swap_nodes(G, edges, Qabs, 0, max_index)

    # Additional formatting  : N x P x d
    N, P, _ = Qabs.shape
    Nrel, Prel, _ = Qrel.shape
    # rotate all absolute poses so that the first camera becomes the reference
    Qabs = utils.quaternion_X_times_Y_inv(
        Qabs, Qabs[0, :, :].unsqueeze(0).repeat(N, 1, 1))

    mask = Qabs[:, :, 0] < 0
    Qabs[mask] *= -1.

    mask = Qrel[:, :, 0] < 0
    Qrel[mask] *= -1.

    wabs = (1. / P) * tr.ones([N, P], dtype=dtype, device=device)
    wrel = (1. / Prel) * tr.ones([Nrel, Prel], dtype=dtype, device=device)

    # reshaping Qrel

    if nx.is_connected(C):
        return edges, G, Qrel, wrel, Qabs, wabs, None
Ejemplo n.º 5
0
    def compute_ratios(self, particles, couplings, edges):
        weights, coupling_strenght = couplings

        ratios = []
        RM_weights = []
        i = edges[:, 0]
        j = edges[:, 1]
        xi = particles[i, :, :]
        xj = particles[j, :, :]
        N, K, _ = xi.shape
        N, L, _ = xj.shape

        #xj = tr.ones_like(xi)
        #xj = xj/tr.norm(xj,dim=-1).unsqueeze(-1)

        A = self.coupling(weights[i, :], weights[j, :],
                          coupling_strenght).reshape([N, -1])
        A = A / tr.sum(A, dim=-1).unsqueeze(-1).detach()
        if self.subsample:
            #mask =tr.multinomial(A,particles.shape[1], replacement=True)
            mask = tr.multinomial(tr.ones_like(A),
                                  particles.shape[1],
                                  replacement=True)
            mask_i = mask / K
            mask_j = mask - mask_i * K

            mask_i = tr.nn.functional.one_hot(mask_i, particles.shape[1]).to(
                particles.device)
            mask_i = mask_i.type(particles.dtype)
            xi = tr.einsum('nki,nlk->nli', xi, mask_i)

            mask_j = tr.nn.functional.one_hot(mask_j, particles.shape[1]).to(
                particles.device)
            mask_j = mask_j.type(particles.dtype)
            xj = tr.einsum('nki,nlk->nli', xj, mask_j)

            mask = tr.nn.functional.one_hot(mask,
                                            A.shape[1]).to(particles.device)
            mask = mask.type(particles.dtype)
            A = tr.einsum('nk,nlk->nl', A, mask)
            #w = tr.einsum('nk,nlk->nl',weights,mask_i)

            if self.grad_type == 'euclidean':
                ratios = utils.forward_quaternion_X_times_Y_inv(xi, xj)
            elif self.grad_type == 'quaternion':
                ratios = utils.quaternion_X_times_Y_inv(xi, xj)

            #ratios = ratios.permute([0,3,1,2]).reshape([N,4,-1]).permute([0,2,1])
            #RM_weights = self.coupling(weights[i,:],weights[j,:],coupling_strenght).reshape([N,-1])
            RM_weights = A / tr.sum(A, dim=-1).unsqueeze(-1).detach()
        else:
            if self.grad_type == 'euclidean':
                ratios = utils.forward_quaternion_X_times_Y_inv_prod(xi, xj)
            elif self.grad_type == 'quaternion':
                ratios = utils.quaternion_X_times_Y_inv_prod(xi, xj)
            ratios = ratios.permute([0, 3, 1,
                                     2]).reshape([N, 4, -1]).permute([0, 2, 1])
            RM_weights = A / tr.sum(A, dim=-1).unsqueeze(-1).detach()
        #RM_weights =  A
        #ratios = particles
        #RM_weights = weights

        return ratios, RM_weights