r_dict[r[i]] = count
        count += 1


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--repository_path", type=str, required=True)
    parser.add_argument("--data_path", type=str, required=True)
    parser.add_argument("--output_path", type=str, required=True)
    args = parser.parse_args()

    repository_path = args.repository_path
    data_path = args.data_path

    tr, v, tst = read_data(data_path)
    ratios = utils.read_qprobs(repository_path)
    create_ratio_dict(ratios)

    print("Processing training set")
    tr_inp, tr_m_out, tr_q_out, tr_r_out, tr_inp_names, tr_inp_years = load_data(
        tr)

    print("Processing validation set")
    v_inp, v_m_out, v_q_out, v_r_out, v_inp_names, v_inp_years = load_data(v)

    print("Processing test set")
    t_inp, t_m_out, t_q_out, t_r_out, t_inp_names, t_inp_years = load_data(tst)

    token2id = {}
    id2token = {}
        valid = pickle.load(in_file)
        dataset_v = valid["dataset_v"]
        v_m_out = valid["v_m_out"]
        v_q_out = valid["v_q_out"]
        v_r_out = valid["v_r_out"]

    print("Loading filename: {}".format(args.embeddings_filename))
    embeddings_index = {}
    with open(args.embeddings_filename) as in_file:
        for line in in_file:
            values = line.split()
            word = values[0]
            coefs = np.asarray(values[1:], dtype='float32')
            embeddings_index[word] = coefs

    embedding_matrix = np.zeros((len(token2id) + 1, 300))
    for word, i in token2id.items():
        embedding_vector = embeddings_index.get(word)
        if embedding_vector is not None:
            embedding_matrix[i] = embedding_vector

    # Load visual data

    tr_inds, v_inds, t_inds = read_indices(args.vision_dataset_path)
    ratios = utils.read_qprobs(args.vision_dataset_path)
    tr_size = 11900
    v_size = 1700
    create_ratio_dict(ratios)
    tr_inp, tr_m_out, tr_q_out, tr_r_out = read_images(tr_inds, tr_size)
    v_inp, v_m_out, v_q_out, v_r_out = read_images(v_inds, v_size)