Ejemplo n.º 1
0
def run():
    csv_file_path = args.csv_file_path
    model_path = args.model_dir
    precision = args.precision

    # System Check
    system_check = utilities(jetson_devkit=args.jetson_devkit,
                             gpu_freq=args.gpu_freq,
                             dla_freq=args.dla_freq)
    if system_check.check_trt():
        sys.exit()
    system_check.set_power_mode(args.power_mode, args.jetson_devkit)
    system_check.clear_ram_space()
    system_check.run_set_clocks_withDVFS()
    system_check.set_jetson_fan(255)
    benchmark_data = read_write_data(csv_file_path=csv_file_path,
                                     model_path=model_path)

    # Actually run the ssd-mobilenet-v1 benchmark here
    model = run_benchmark_models(csv_file_path=csv_file_path,
                                 model_path=model_path,
                                 precision=precision,
                                 benchmark_data=benchmark_data)
    download_err = model.execute(read_index=7)
    if not download_err:
        fps, error_log = model.report()
        if not error_log:
            model.remove()
    system_check.clear_ram_space()
    system_check.set_jetson_fan(0)
    return fps[3]
Ejemplo n.º 2
0
def run():
    csv_file_path = args.csv_file_path
    model_path = args.model_dir
    precision = args.precision

    # System Check
    system_check = utilities(jetson_devkit=args.jetson_devkit,
                             gpu_freq=args.gpu_freq,
                             dla_freq=args.dla_freq)
    if system_check.check_trt():
        sys.exit()
    system_check.set_power_mode(args.power_mode, args.jetson_devkit)
    system_check.clear_ram_space()
    system_check.run_set_clocks_withDVFS()
    system_check.set_jetson_fan(255)
    benchmark_data = read_write_data(csv_file_path=csv_file_path,
                                     model_path=model_path)

    # Run through all the benchmarks here
    running_total = 0
    running_total += inception_benchmark.run()
    running_total += vgg_benchmark.run()
    running_total += superres_benchmark.run()
    running_total += unet_benchmark.run()
    running_total += pose_benchmark.run()
    running_total += yolo_benchmark.run()
    running_total += resnet_benchmark.run()
    running_total += mobilenet_benchmark.run()
    average_fps = running_total / 8

    system_check.clear_ram_space()
    system_check.set_jetson_fan(0)
    return average_fps
Ejemplo n.º 3
0
def main():
    # Set Parameters
    arg_parser = benchmark_argparser()
    args = arg_parser.make_args()
    csv_file_path = args.csv_file_path
    model_path = args.model_dir
    precision = args.precision

    dummy_check = utilities()
    if dummy_check.check_trt():
        print(
            "Couldn't find TensorRT, please check trtexec in the path(\"/usr/src/tensorrt/bin/trtexec \")"
        )
        sys.exit()
    dummy_check.close_all_warning()

    # Read CSV and Write Data
    benchmark_data = read_write_data(csv_file_path=csv_file_path,
                                     model_path=model_path)
    if args.all:
        latency_each_model = []
        print(
            "Running all benchmarks.. This would take long time if the trt engine is not prepared..."
        )
        for read_index in range(0, len(benchmark_data)):
            gc.collect()
            model = run_benchmark_models(csv_file_path=csv_file_path,
                                         model_path=model_path,
                                         precision=precision,
                                         benchmark_data=benchmark_data)
            download_err = model.execute(read_index=read_index)
            if not download_err:
                # Reading Results
                latency_fps, error_log = model.report()
                latency_each_model.append(latency_fps)
            del gc.garbage[:]
        benchmark_table = pd.DataFrame(latency_each_model,
                                       columns=[
                                           'GPU (ms)', 'DLA0 (ms)',
                                           'DLA1 (ms)', 'FPS', 'Model Name'
                                       ],
                                       dtype=float)
        # Note: GPU, DLA latencies are measured in miliseconds, FPS = Frames per Second
        print(benchmark_table[['Model Name', 'FPS']])
        if args.plot:
            benchmark_data.plot_perf(latency_each_model)

    elif args.model_name == 'inception_v4':
        model = run_benchmark_models(csv_file_path=csv_file_path,
                                     model_path=model_path,
                                     precision=precision,
                                     benchmark_data=benchmark_data)
        download_err = model.execute(read_index=0)
        if not download_err:
            _, error_log = model.report()

    elif args.model_name == 'super_resolution':
        model = run_benchmark_models(csv_file_path=csv_file_path,
                                     model_path=model_path,
                                     precision=precision,
                                     benchmark_data=benchmark_data)
        download_err = model.execute(read_index=2)
        if not download_err:
            _, error_log = model.report()

    elif args.model_name == 'unet':
        model = run_benchmark_models(csv_file_path=csv_file_path,
                                     model_path=model_path,
                                     precision=precision,
                                     benchmark_data=benchmark_data)
        download_err = model.execute(read_index=3)
        if not download_err:
            _, error_log = model.report()

    elif args.model_name == 'tiny-yolov3':
        model = run_benchmark_models(csv_file_path=csv_file_path,
                                     model_path=model_path,
                                     precision=precision,
                                     benchmark_data=benchmark_data)
        download_err = model.execute(read_index=5)
        if not download_err:
            _, error_log = model.report()

    elif args.model_name == 'resnet':
        model = run_benchmark_models(csv_file_path=csv_file_path,
                                     model_path=model_path,
                                     precision=precision,
                                     benchmark_data=benchmark_data)
        download_err = model.execute(read_index=6)
        if not download_err:
            _, error_log = model.report()

    elif args.model_name == 'ssd-mobilenet-v1':
        model = run_benchmark_models(csv_file_path=csv_file_path,
                                     model_path=model_path,
                                     precision=precision,
                                     benchmark_data=benchmark_data)
        download_err = model.execute(read_index=7)
        if not download_err:
            _, error_log = model.report()
Ejemplo n.º 4
0
def main():
    # Set Parameters
    arg_parser = benchmark_argparser()
    args = arg_parser.make_args()
    csv_file_path = args.csv_file_path
    model_path = args.model_dir
    precision = args.precision

    # System Check
    system_check = utilities(jetson_devkit=args.jetson_devkit, gpu_freq=args.gpu_freq, dla_freq=args.dla_freq)
    system_check.close_all_apps()
    if system_check.check_trt():
        sys.exit()
    system_check.set_power_mode(args.power_mode, args.jetson_devkit)
    system_check.clear_ram_space()
    if args.jetson_clocks:
        system_check.set_jetson_clocks()
    else:
        system_check.run_set_clocks_withDVFS()
        system_check.set_jetson_fan(255)

    # Read CSV and Write Data
    benchmark_data = read_write_data(csv_file_path=csv_file_path, model_path=model_path)
    if args.all:
        latency_each_model =[]
        print("Running all benchmarks.. This will take at least 2 hours...")
        for read_index in range (0,len(benchmark_data)):
            gc.collect()
            model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
            download_err = model.execute(read_index=read_index)
            if not download_err:
                # Reading Results
                latency_fps, error_log = model.report()
                latency_each_model.append(latency_fps)
                # Remove engine and txt files
                if not error_log:
                    model.remove()
            del gc.garbage[:]
            system_check.clear_ram_space()
        benchmark_table = pd.DataFrame(latency_each_model, columns=['GPU (ms)', 'DLA0 (ms)', 'DLA1 (ms)', 'FPS', 'Model Name'], dtype=float)
        # Note: GPU, DLA latencies are measured in miliseconds, FPS = Frames per Second
        print(benchmark_table[['Model Name', 'FPS']])
        if args.plot:
            benchmark_data.plot_perf(latency_each_model)

    elif args.model_name == 'inception_v4':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=0)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    elif args.model_name == 'vgg19':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=1)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    elif args.model_name == 'super_resolution':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=2)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    elif args.model_name == 'unet':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=3)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    elif args.model_name == 'pose_estimation':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=4)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    elif args.model_name == 'tiny-yolov3':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=5)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    elif args.model_name == 'resnet':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=6)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    elif args.model_name == 'ssd-mobilenet-v1':
        model = run_benchmark_models(csv_file_path=csv_file_path, model_path=model_path, precision=precision, benchmark_data=benchmark_data)
        download_err = model.execute(read_index=7)
        if not download_err:
            _, error_log = model.report()
            if not error_log:
                model.remove()

    system_check.clear_ram_space()
    system_check.set_jetson_fan(0)