Ejemplo n.º 1
0
    def get_subgraph(self, i):
        nbr = self.nbrs[i]
        dist = self.dists[i]
        idxs = np.where(self.confs[nbr] > self.confs[i])[0]

        if len(idxs) == 0:
            return None
        elif len(idxs) == 1 or i in self.ignore_set:
            nbr_lst = []
            dist_lst = []
            for j in idxs[:self.max_conn]:
                nbr_lst.append(nbr[j])
                dist_lst.append(self.dists[i, j])
            return i, nbr_lst, dist_lst

        if self.use_candidate_set:
            nbr = nbr[idxs]
            dist = dist[idxs]

        # present `direction`
        feat = self.features[nbr] - self.features[i]
        adj = self.adj[nbr, :][:, nbr]
        adj = row_normalize(adj).toarray().astype(np.float32)

        if not self.ignore_label:
            lb = [int(self.idx2lb[i] == self.idx2lb[n]) for n in nbr]
        else:
            lb = [0 for _ in nbr]  # dummy labels
        lb = np.array(lb)

        return i, nbr, dist, feat, adj, lb
Ejemplo n.º 2
0
    def propagate(self, adj, labels, idx_train):
        # row_sums = adj.sum(axis=1).A1
        # row_sum_diag_mat = np.diag(row_sums)
        # adj_rw = np.linalg.inv(row_sum_diag_mat).dot(adj)
        adj_rw = row_normalize(self.adj.asfptype())
        Y = np.zeros(labels.shape)
        for id in idx_train:
            Y[id] = labels[id]

        for i in range(0, 1000):
            Y = adj_rw.dot(Y)
            for id in idx_train:
                Y[id] = labels[id]  # Clamping

        return Y.round()
Ejemplo n.º 3
0
def load_geom_datasets(dataset, seed):
    dataset_split = 'splits/%s_split_0.6_0.2_%s.npz' % (
        dataset, seed % 10)  # seed%10 --> which split
    print('loading %s' % dataset_split)
    adj, features, labels, train_mask, val_mask, test_mask, num_features, num_labels = load_data(
        dataset, dataset_split, None, None, 'ExperimentTwoAll')

    # print(adj.nnz)
    # print((adj+adj.transpose()).nnz)

    idx = np.arange(len(labels))
    idx_train, idx_val, idx_test = idx[train_mask.astype(
        np.bool)], idx[val_mask.astype(np.bool)], idx[test_mask.astype(
            np.bool)]

    features = row_normalize(features)

    return adj, adj, features, features, labels, idx_train, idx_val, idx_test, None, None
Ejemplo n.º 4
0
Archivo: dataset.py Proyecto: yuk12/dgl
    def _build_graph(self, features, cluster_features, labels, density, knns):
        adj = fast_knns2spmat(knns, self.k)
        adj, adj_row_sum = row_normalize(adj)
        indices, values, shape = sparse_mx_to_indices_values(adj)

        g = dgl.graph((indices[1], indices[0]))
        g.ndata['features'] = torch.FloatTensor(features)
        g.ndata['cluster_features'] = torch.FloatTensor(cluster_features)
        g.ndata['labels'] = torch.LongTensor(labels)
        g.ndata['density'] = torch.FloatTensor(density)
        g.edata['affine'] = torch.FloatTensor(values)
        # A Bipartite from DGL sampler will not store global eid, so we explicitly save it here
        g.edata['global_eid'] = g.edges(form='eid')
        g.ndata['norm'] = torch.FloatTensor(adj_row_sum)
        g.apply_edges(lambda edges: {'raw_affine': edges.data['affine'] / edges.dst['norm']})
        g.apply_edges(lambda edges: {'labels_conn': (edges.src['labels'] == edges.dst['labels']).long()})
        g.apply_edges(lambda edges: {'mask_conn': (edges.src['density'] > edges.dst['density']).bool()})
        return g
Ejemplo n.º 5
0
def populate_clustering(G: HIN,
                        n_clusters: int,
                        WT_clusters: List[Dict[str, float]],
                        damping=0.8) -> Tuple[np.ndarray, np.ndarray]:
    """Populate clustering results from terms to whole graph by random walk w/ restart.

  Args:
    G: The HIN.
    n_clusters: Number of clusters.
    WT_clusters: A list of initial weights of terms in each cluster. These
      weights will be populated to the whole graph.
    damping: The damping factor for random walk. Larger means more restart
      probability.

  Returns:
    ranking: The ranking distribution over ALL nodes. Shape (n_nodes,
    n_clusters).
    clustering_probs: The clustering distribution of all nodes. Shape (n_nodes,
    n_clusters).
  """
    clustering_probs = np.zeros((G.num_nodes(), n_clusters), dtype=np.float64)
    for k in range(n_clusters):
        # get initial distribution using T_score
        T_score = list(WT_clusters[k].items())  # P_Ti
        # T_score = take_topk(WT_clusters[k], 20, return_tuple=True)
        phrases, scores = list(zip(*T_score))
        z = sum(WT_clusters[k].values())  # normalizer
        dist = np.zeros((G.num_nodes(), ), dtype=np.float64)
        aligned_nids = G.find_by_entity_ids("K", phrases)
        for i in range(len(scores)):
            dist[aligned_nids[i]] = scores[i] / z

        # use random walk to populate clustering probabilities
        pr = G.ppr(damping=damping, init_probs=dist)
        clustering_probs[:, k] = pr
    ranking = clustering_probs
    clustering_probs = utils.row_normalize(clustering_probs)
    return ranking, clustering_probs
Ejemplo n.º 6
0
    def __init__(self, cfg):
        feat_path = cfg['feat_path']
        label_path = cfg.get('label_path', None)
        knn_graph_path = cfg.get('knn_graph_path', None)

        self.k = cfg['k']
        self.feature_dim = cfg['feature_dim']
        self.is_norm_feat = cfg.get('is_norm_feat', True)

        self.th_sim = cfg.get('th_sim', 0.)
        self.max_conn = cfg.get('max_conn', 1)

        self.ignore_ratio = cfg.get('ignore_ratio', 0.8)
        self.ignore_small_confs = cfg.get('ignore_small_confs', True)
        self.use_candidate_set = cfg.get('use_candidate_set', True)

        self.nproc = cfg.get('nproc', 1)
        self.max_qsize = cfg.get('max_qsize', int(1e5))

        with Timer('read meta and feature'):
            if label_path is not None:
                self.lb2idxs, self.idx2lb = read_meta(label_path)
                self.inst_num = len(self.idx2lb)
                self.gt_labels = intdict2ndarray(self.idx2lb)
                self.ignore_label = False
            else:
                self.inst_num = -1
                self.ignore_label = True
            self.features = read_probs(feat_path, self.inst_num,
                                       self.feature_dim)
            if self.is_norm_feat:
                self.features = l2norm(self.features)
            if self.inst_num == -1:
                self.inst_num = self.features.shape[0]
            self.size = self.inst_num
            assert self.size == self.features.shape[0]

        print('feature shape: {}, k: {}, norm_feat: {}'.format(
            self.features.shape, self.k, self.is_norm_feat))

        with Timer('read knn graph'):
            if knn_graph_path is not None:
                knns = np.load(knn_graph_path)['data']
            else:
                prefix = osp.dirname(feat_path)
                name = rm_suffix(osp.basename(feat_path))
                # find root folder of `features`
                prefix = osp.dirname(prefix)
                knn_prefix = osp.join(prefix, 'knns', name)
                knns = build_knns(knn_prefix, self.features, cfg.knn_method,
                                  cfg.knn)
            assert self.inst_num == len(knns), "{} vs {}".format(
                self.inst_num, len(knns))

            adj = fast_knns2spmat(knns, self.k, self.th_sim, use_sim=True)

            # build symmetric adjacency matrix
            adj = build_symmetric_adj(adj, self_loop=True)
            self.adj = row_normalize(adj)

            # convert knns to (dists, nbrs)
            self.dists, self.nbrs = knns2ordered_nbrs(knns, sort=True)

            if cfg.pred_confs != '':
                print('read estimated confidence from {}'.format(
                    cfg.pred_confs))
                self.confs = np.load(cfg.pred_confs)['pred_confs']
            else:
                print('use unsupervised density as confidence')
                assert self.radius
                from vegcn.confidence import density
                self.confs = density(self.dists, radius=self.radius)

            assert 0 <= self.ignore_ratio <= 1
            if self.ignore_ratio == 1:
                self.ignore_set = set(np.arange(len(self.confs)))
            else:
                num = int(len(self.confs) * self.ignore_ratio)
                confs = self.confs
                if not self.ignore_small_confs:
                    confs = -confs
                self.ignore_set = set(np.argpartition(confs, num)[:num])

        print(
            'ignore_ratio: {}, ignore_small_confs: {}, use_candidate_set: {}'.
            format(self.ignore_ratio, self.ignore_small_confs,
                   self.use_candidate_set))
        print('#ignore_set: {} / {} = {:.3f}'.format(
            len(self.ignore_set), self.inst_num,
            1. * len(self.ignore_set) / self.inst_num))

        with Timer('Prepare sub-graphs'):
            # construct subgraphs with larger confidence
            self.peaks = {i: [] for i in range(self.inst_num)}
            self.dist2peak = {i: [] for i in range(self.inst_num)}

            if self.nproc > 1:
                # multi-process
                import multiprocessing as mp
                pool = mp.Pool(self.nproc)
                results = []
                num = int(self.inst_num / self.max_qsize) + 1
                for i in tqdm(range(num)):
                    beg = int(i * self.max_qsize)
                    end = min(beg + self.max_qsize, self.inst_num)
                    lst = [j for j in range(beg, end)]
                    results.extend(
                        list(
                            tqdm(pool.map(self.get_subgraph, lst),
                                 total=len(lst))))
                pool.close()
                pool.join()
            else:
                results = [
                    self.get_subgraph(i) for i in tqdm(range(self.inst_num))
                ]

            self.adj_lst = []
            self.feat_lst = []
            self.lb_lst = []
            self.subset_gt_labels = []
            self.subset_idxs = []
            self.subset_nbrs = []
            self.subset_dists = []
            for result in results:
                if result is None:
                    continue
                elif len(result) == 3:
                    i, nbr, dist = result
                    self.peaks[i].extend(nbr)
                    self.dist2peak[i].extend(dist)
                    continue
                i, nbr, dist, feat, adj, lb = result
                self.subset_idxs.append(i)
                self.subset_nbrs.append(nbr)
                self.subset_dists.append(dist)
                self.feat_lst.append(feat)
                self.adj_lst.append(adj)
                if not self.ignore_label:
                    self.subset_gt_labels.append(self.idx2lb[i])
                    self.lb_lst.append(lb)
            self.subset_gt_labels = np.array(self.subset_gt_labels)

            self.size = len(self.feat_lst)
            assert self.size == len(self.adj_lst)
            if not self.ignore_label:
                assert self.size == len(self.lb_lst)
Ejemplo n.º 7
0
    def __init__(self, cfg):
        feat_path = cfg['feat_path']
        label_path = cfg.get('label_path', None)
        knn_graph_path = cfg.get('knn_graph_path', None)

        self.k = cfg['k']
        self.feature_dim = cfg['feature_dim']
        self.is_norm_feat = cfg.get('is_norm_feat', True)
        self.save_decomposed_adj = cfg.get('save_decomposed_adj', False)

        self.th_sim = cfg.get('th_sim', 0.)
        self.max_conn = cfg.get('max_conn', 1)
        self.conf_metric = cfg.get('conf_metric')

        with Timer('read meta and feature'):
            if label_path is not None:
                self.lb2idxs, self.idx2lb = read_meta(label_path)
                self.inst_num = len(self.idx2lb)
                self.gt_labels = intdict2ndarray(self.idx2lb)
                self.ignore_label = False
            else:
                self.inst_num = -1
                self.ignore_label = True
            self.features = read_probs(feat_path, self.inst_num,
                                       self.feature_dim)
            if self.is_norm_feat:
                self.features = l2norm(self.features)
            if self.inst_num == -1:
                self.inst_num = self.features.shape[0]
            self.size = 1 # take the entire graph as input

        with Timer('read knn graph'):
            if os.path.isfile(knn_graph_path):
                knns = np.load(knn_graph_path)['data']
            else:
                if knn_graph_path is not None:
                    print('knn_graph_path does not exist: {}'.format(
                        knn_graph_path))
                
                prefix = osp.dirname(feat_path)
                name = rm_suffix(osp.basename(feat_path))
                # find root folder of `features`
                prefix = osp.dirname(prefix)
                knn_prefix = osp.join(prefix, 'knns', name)
                knns = build_knns(knn_prefix, self.features, cfg.knn_method,
                                  cfg.knn)

            adj = fast_knns2spmat(knns, self.k, self.th_sim, use_sim=True)

            # build symmetric adjacency matrix
            adj = build_symmetric_adj(adj, self_loop=True)
            adj = row_normalize(adj)
            if self.save_decomposed_adj:
                adj = sparse_mx_to_indices_values(adj)
                self.adj_indices, self.adj_values, self.adj_shape = adj
            else:
                self.adj = adj

            # convert knns to (dists, nbrs)
            self.dists, self.nbrs = knns2ordered_nbrs(knns)

        print('feature shape: {}, k: {}, norm_feat: {}'.format(
            self.features.shape, self.k, self.is_norm_feat))

        if not self.ignore_label:
            with Timer('Prepare ground-truth label'):
                self.labels = confidence(feats=self.features,
                                         dists=self.dists,
                                         nbrs=self.nbrs,
                                         metric=self.conf_metric,
                                         idx2lb=self.idx2lb,
                                         lb2idxs=self.lb2idxs)
                if cfg.eval_interim:
                    _, self.peaks = confidence_to_peaks(
                        self.dists, self.nbrs, self.labels, self.max_conn)
Ejemplo n.º 8
0
    def __init__(self, cfg):
        feat_path = cfg['feat_path']
        label_path = cfg.get('label_path', None)
        knn_graph_path = cfg.get('knn_graph_path', None)

        self.k = cfg['k']
        self.feature_dim = cfg['feature_dim']
        self.is_norm_feat = cfg.get('is_norm_feat', True)
        self.save_decomposed_adj = cfg.get('save_decomposed_adj', False)

        self.th_sim = cfg.get('th_sim', 0.)
        self.max_conn = cfg.get('max_conn', 1)
        self.conf_metric = cfg.get('conf_metric')
        self.num_process = cfg.get('num_process',16)

        with Timer('read meta and feature'):
            if label_path is not None:
                self.lb2idxs, self.idx2lb = read_meta(label_path)
                self.inst_num = len(self.idx2lb)
                self.gt_labels = intdict2ndarray(self.idx2lb)
                self.ignore_label = False
            else:
                self.inst_num = -1
                self.ignore_label = True
            self.features = read_probs(feat_path, self.inst_num,
                                       self.feature_dim)
            if self.is_norm_feat:
                self.features = l2norm(self.features)
            if self.inst_num == -1:
                self.inst_num = self.features.shape[0]
            self.size = 1 # take the entire graph as input

        with Timer('read knn graph'):
            if os.path.isfile(knn_graph_path):
                knns = np.load(knn_graph_path)['data']    # num_imgs*2*k
            else:
                if knn_graph_path is not None:
                    print('knn_graph_path does not exist: {}'.format(
                        knn_graph_path))
                knn_prefix = os.path.join(cfg.prefix, 'knns', cfg.name)
                # 通过faiss实现k近邻搜索,此处作者faiss_gpu版本实现可能有问题,但faiss大规模在cpu上跑还是慢
                # 当然faiss有针内存和计算速度方面的优化,PQ,IVF等,可参考faiss
                knns = build_knns(knn_prefix, self.features, cfg.knn_method,
                                  cfg.knn,self.num_process)
            # 依据k近邻搜索结果构建邻接矩阵
            adj = fast_knns2spmat(knns, self.k, self.th_sim, use_sim=True)

            # build symmetric adjacency matrix
            adj = build_symmetric_adj(adj, self_loop=True)
            adj = row_normalize(adj)
            if self.save_decomposed_adj:
                adj = sparse_mx_to_indices_values(adj)
                self.adj_indices, self.adj_values, self.adj_shape = adj
            else:
                self.adj = adj

            # convert knns to (dists, nbrs)
            self.dists, self.nbrs = knns2ordered_nbrs(knns)  # num_imgs*k

        print('feature shape: {}, k: {}, norm_feat: {}'.format(
            self.features.shape, self.k, self.is_norm_feat))

        if not self.ignore_label:
            with Timer('Prepare ground-truth label'):
                self.labels = confidence(feats=self.features,
                                         dists=self.dists,
                                         nbrs=self.nbrs,
                                         metric=self.conf_metric,
                                         idx2lb=self.idx2lb,
                                         lb2idxs=self.lb2idxs)
                if cfg.eval_interim:
                    _, self.peaks = confidence_to_peaks(
                        self.dists, self.nbrs, self.labels, self.max_conn)
Ejemplo n.º 9
0
def train_gcn(model, cfg, logger):
    # prepare dataset
    for k, v in cfg.model['kwargs'].items():
        setattr(cfg.train_data, k, v)
    dataset = build_dataset(cfg.model['type'], cfg.train_data)
    pre_features = torch.FloatTensor(dataset.features)
    print('Have loaded the training data.')

    inst_num = dataset.inst_num
    feature_dim = dataset.feature_dim
    lb2idxs = dataset.lb2idxs
    center_fea = dataset.center_fea.astype('float32')
    cls_num, dim = center_fea.shape

    labels = torch.LongTensor(dataset.gt_labels)
    HEAD1 = HEAD(nhid=512)
    HEAD_test1 = HEAD_test(nhid=512)

    #load parameters from the pretrained model
    #model.load_state_dict(torch.load('./'))
    #HEAD1.load_state_dict(torch.load('./'), False)

    OPTIMIZER = optim.SGD([{'params': model.parameters(),'weight_decay':1e-5},
                           {'params': HEAD1.parameters(),'weight_decay':1e-5}], lr=0.01, momentum=0.9)
    print('the learning rate is 0.01')

    #model.load_state_dict(torch.load(''))
    #HEAD1.load_state_dict(torch.load(''))
    print("have load the pretrained model.")
    cfg.cuda = True
    model = model.cuda()
    HEAD1 = HEAD1.cuda()

    MODEL_ROOT = './src/train_model'
    print('the model save path is', MODEL_ROOT)

    #prepare the test data
    target = "part1_test"
    knn_path = "./data/knns/" + target + "/faiss_k_80.npz"
    knns = np.load(knn_path, allow_pickle=True)['data']
    inst_num = knns.shape[0]
    k_num = knns.shape[2]
    nbrs = knns[:, 0, :]
    pair_a = []
    pair_b = []
    for i in range(inst_num):
        pair_a.extend([i] * k_num)
        pair_b.extend(nbrs[i])


    for epoch in range(cfg.total_epochs):
        if epoch == cfg.STAGES[0]:  # adjust LR for each training stage after warm up, you can also choose to adjust LR manually (with slight modification) once plaueau observed
            schedule_lr(OPTIMIZER)
        if epoch == cfg.STAGES[1]:
            schedule_lr(OPTIMIZER)
        if epoch == cfg.STAGES[2]:
            schedule_lr(OPTIMIZER)

        model.train()
        HEAD1.train()

        index = faiss.IndexFlatIP(dim)
        index.add(center_fea)
        sims, cluster_id = index.search(center_fea, k=(cfg.cluster_num+200))  # search for the k-10 neighbor
        #sims, cluster_id = index.search(center_fea, k=cfg.cluster_num)  # search for the k-10 neighbor
        print('Have selected the cluster ids.')

        for batch in range(cls_num):
        #for batch in range(20):
            #0.select ids
            sample_cluster_id = random.sample(list(cluster_id[batch]), cfg.cluster_num)
            #sample_cluster_id = list(cluster_id[batch])
            sample_id = []#the idx of the samples in this batch
            for i in range(len(sample_cluster_id)):
                sample_id.extend(random.sample(lb2idxs[sample_cluster_id[i]],int(len(lb2idxs[sample_cluster_id[i]])*0.9)))
                #sample_id.extend(lb2idxs[sample_cluster_id[i]])
            #sample_id.sort()
            sample_num =len(sample_id)
            #id = list(np.arange(0,sample_num,1))
            #sample2sort = dict(zip(sample_id, id))
            if (sample_num>100000)|(sample_num<100):
                print('[too much samples] continue.')
                continue

            #1.create selected labels and images
            batch_labels = labels[sample_id]
            feature = pre_features[sample_id]
            print(sample_num)

            #2.create knn for this batch
            with Timer('build knn:'):
                knn_prefix = os.path.join("./data/rebuild_knn")
                if not os.path.exists(knn_prefix):
                    os.makedirs(knn_prefix)
                if os.path.exists(os.path.join(knn_prefix, 'faiss_k_80.npz')):
                    os.remove(os.path.join(knn_prefix, 'faiss_k_80.npz'))
                if os.path.exists(os.path.join(knn_prefix, 'faiss_k_80.index')):
                    os.remove(os.path.join(knn_prefix, 'faiss_k_80.index'))

                knns = build_knns(knn_prefix,
                                  #l2norm(feature.clone().detach().cpu().numpy()),
                                  l2norm(feature.numpy()),
                                  "faiss",
                                  80,
                                  is_rebuild=True)
                batch_adj = fast_knns2spmat(knns, 80, 0, use_sim=True)
                batch_adj = build_symmetric_adj(batch_adj, self_loop=True)
                batch_adj = row_normalize(batch_adj)
                batch_adj = sparse_mx_to_torch_sparse_tensor(batch_adj, return_idx=False)

            #3.put selected feature and labels to cuda
            batch_labels = batch_labels.cuda()
            feature = feature.cuda()
            batch_adj = batch_adj.cuda()
            train_data = [feature, batch_adj, batch_labels]
            #x = model(train_data)

            #4.train the model
            #add
            train_id_inst = batch_adj._indices().size()[1]
            #print('train_id_inst:', train_id_inst)
            #print('sample_num:', sample_num)
            #train_id_inst = sample_num
            rad_id = random.sample(range(0, train_id_inst), train_id_inst)+random.sample(range(0, train_id_inst), train_id_inst)
            patch_num = 40
            for i in range(patch_num*2):
                id = rad_id[i * int(train_id_inst / patch_num):(i + 1) * int(train_id_inst / patch_num)]
                x = model(train_data)
                loss = HEAD1(x, train_data, id)

                OPTIMIZER.zero_grad()
                loss.backward()
                OPTIMIZER.step()

                print(datetime.datetime.now())
                print('epoch:{}/{}, batch:{}/{}, batch2:{}/{},loss:{}'.format(epoch, cfg.total_epochs, batch, cls_num, i, patch_num*2, loss))

            if (batch+1)%100==0:
                if not os.path.exists(MODEL_ROOT):
                    os.makedirs(MODEL_ROOT)
                print('save model in epoch:{} batch:{} to {}'.format(epoch, batch, MODEL_ROOT))
                torch.save(model.state_dict(), os.path.join(MODEL_ROOT, "Backbone_Epoch_{}_batch_{}.pth".format(epoch + 1, batch)))
                torch.save(HEAD1.state_dict(), os.path.join(MODEL_ROOT, "Head_Epoch_{}_batch_{}.pth".format(epoch + 1, batch)))
            
            if (batch + 1) % 300 == 0:
                avg_acc = perform_val(model, HEAD1, HEAD_test1, cfg, feature_dim, pair_a, pair_b)
                print('the avg testing acc in epoch:{} batch:{} is :'.format(epoch,batch), avg_acc)
                model.train()
                HEAD1.train()


        #5.test
        avg_acc = perform_val(model, HEAD1, HEAD_test1, cfg, feature_dim, pair_a, pair_b)
        print('the avg testing acc in epoch:{} batch:{} is :'.format(epoch,batch), avg_acc)


        # 6.save model
        if not os.path.exists(MODEL_ROOT):
            os.makedirs(MODEL_ROOT)
        print('save model in epoch:{} batch:{} to {}'.format(epoch, batch, MODEL_ROOT))
        torch.save(model.state_dict(), os.path.join(MODEL_ROOT, "Backbone_Epoch_{}_batch_{}.pth".format(epoch + 1, batch)))
        torch.save(HEAD1.state_dict(), os.path.join(MODEL_ROOT, "Head_Epoch_{}_batch_{}.pth".format(epoch + 1, batch)))
Ejemplo n.º 10
0
    def __init__(self, cfg):
        feat_path = cfg['feat_path']
        label_path = cfg.get('label_path', None)
        knn_graph_path = cfg.get('knn_graph_path', None)

        self.k = cfg['k']
        self.feature_dim = cfg['feature_dim']
        self.is_norm_feat = cfg.get('is_norm_feat', True)
        self.save_decomposed_adj = cfg.get('save_decomposed_adj', False)

        self.th_sim = cfg.get('th_sim', 0.)
        self.conf_metric = cfg.get('conf_metric')

        with Timer('read meta and feature'):
            if label_path is not None:
                self.lb2idxs, self.idx2lb = read_meta(label_path)
                self.inst_num = len(self.idx2lb)
                self.cls_num = len(self.lb2idxs)
                self.gt_labels = intdict2ndarray(self.idx2lb)
                self.ignore_label = False
            else:
                self.inst_num = -1
                self.ignore_label = True
            self.features = read_probs(feat_path, self.inst_num,
                                       self.feature_dim)

            if self.is_norm_feat:
                self.features = l2norm(self.features)
            if self.inst_num == -1:
                self.inst_num = self.features.shape[0]
            self.size = 1  # take the entire graph as input

        with Timer('Compute center feature'):
            self.center_fea = np.zeros((self.cls_num, self.features.shape[1]))
            for i in range(self.cls_num):
                self.center_fea[i] = np.mean(self.features[self.lb2idxs[i]], 0)
            self.center_fea = l2norm(self.center_fea)

        with Timer('read knn graph'):
            if os.path.isfile(knn_graph_path):
                print("load knns from the knn_path")
                self.knns = np.load(knn_graph_path)['data']
            else:
                if knn_graph_path is not None:
                    print('knn_graph_path does not exist: {}'.format(
                        knn_graph_path))
                knn_prefix = os.path.join(cfg.prefix, 'knns', cfg.name)
                self.knns = build_knns(knn_prefix, self.features,
                                       cfg.knn_method, cfg.knn)

            adj = fast_knns2spmat(self.knns, self.k, self.th_sim, use_sim=True)

            # build symmetric adjacency matrix
            adj = build_symmetric_adj(adj, self_loop=True)
            #print('adj before norm')
            #print(adj)
            adj = row_normalize(adj)
            if self.save_decomposed_adj:
                adj = sparse_mx_to_indices_values(adj)
                self.adj_indices, self.adj_values, self.adj_shape = adj
            else:
                self.adj = adj

            # convert knns to (dists, nbrs)
            self.dists, self.nbrs = knns2ordered_nbrs(self.knns)

        print('feature shape: {}, k: {}, norm_feat: {}'.format(
            self.features.shape, self.k, self.is_norm_feat))