Ejemplo n.º 1
0
    def action_get_balance(self, **kwargs):
        endpoint = '/phone/balance'
        config_params = ('appIdVersion')
        response = self._make_request(endpoint, config_params=config_params)

        msg = 'Plan balance information:\n\n'
        for plan in response:
            if plan.get('voicePlanType') != 'MAIN':
                continue

            msg += 'Plan "%s":\n' % plan['name']
            msg += '* Price: %.2f\n' % plan['price']
            if plan.get('unlimitedVoice', False):
                msg += '* Unlimited calls\n'
            else:
                msg += ('* Calls: %d min (%d min remaining)\n' % (utils.s_to_m(
                    plan['baseSeconds']), plan['balance']['remainingMinutes']))
            if plan.get('unlimitedData', False):
                msg += '* Unlimited data\n'
            else:
                msg += ('* Data: %d MB remaining\n' %
                        utils.b_to_mb(plan['balance']['remainingData']))
            if 'baseSMS' in plan:
                msg += ('* SMS: %d (%d remaining)\n' %
                        (plan['baseSMS'], plan['balance']['remainingSMS']))
            msg += '\n'

        return msg
Ejemplo n.º 2
0
    def action_get_phone_account_info(self, **kwargs):
        endpoint = '/phone/account/info'
        response = self._make_request(endpoint)

        msg = 'Account information:\n\n'
        msg += 'First Name: %s\n' % response['firstName']
        msg += 'Last Name: %s\n' % response['lastName']
        msg += 'e-mail: %s\n' % response['email']
        msg += 'Plan: "%s"\n' % response['voiceplan']['name']
        msg += 'Price: %.2f\n' % response['voiceplan']['price']
        if response['voiceplan']['unlimitedVoice']:
            msg += 'Unlimited calls\n'
        else:
            msg += ('Base minutes: %d\n' %
                    utils.s_to_m(response['voiceplan']['baseSeconds']))
        if response['voiceplan']['unlimitedText']:
            msg += 'Unlimited SMS\n'
        else:
            msg += 'Base SMS: %d\n' % response['voiceplan']['baseSMS']
        msg += ('\nDays until billing date: %d\n' %
                response['daysUntilBillingDate'])
        for sim in response['accounts']:
            msg += '\nSIM Id: %s\n' % sim['accountId']
            msg += 'SIM name: %s\n' % sim['accountName']
            msg += 'Phone number: %s\n' % sim['phoneNumber']
        msg += ('\nAccount is %s\n' %
                response['accountStatusAndMessage']['status'])
        msg += '"%s"\n' % response['accountStatusAndMessage']['message']

        return msg
Ejemplo n.º 3
0
def hyperloop_finite(model,
                     resource_type,
                     params,
                     min_units,
                     max_units,
                     runtime,
                     director,
                     data,
                     test,
                     rng=np.random.RandomState(1234),
                     eta=4.,
                     budget=0,
                     n_hyperloops=1,
                     s_run=None,
                     doubling=False,
                     problem='cont',
                     verbose=False):
    """Hyperband with finite horizon.

    :param model: object with subroutines to generate arms and train models
    :param resource_type: type of resource to be allocated
    :param params: hyperparameter search space
    :param min_units: minimum units of resources can be allocated to one configuration
    :param max_units: maximum units of resources can be allocated to one configuration
    :param runtime: runtime patience (in min)
    :param director: path to the directory where output are stored
    :param data: dataset to use
    :param test: test set
    :param rng: random state
    :param eta: elimination proportion
    :param budget: total budget for one bracket
    :param n_hyperloops: maximum number of hyperloops to run
    :param s_run: option to repeat a specific bracket
    :param doubling: option to decide whether we want to double the per bracket budget in the outer loop
    :param problem: type of problem (classification or regression)
    :param verbose: verbose option
    :return: None
    """
    start_time = timeit.default_timer()
    # result storage
    results = {}
    durations = []

    # outer loop
    k = 0
    while utils.s_to_m(start_time,
                       timeit.default_timer()) < runtime and k < n_hyperloops:
        # initialize the budget according to whether we do doubling trick or not
        if budget == 0:
            if not doubling:
                budget = int(
                    np.floor(utils.log_eta(max_units / min_units, eta)) +
                    1) * max_units
            else:
                budget = int((2**k) * max_units)

        k += 1

        print('\nBudget B = %i' % budget)
        print('##################')

        big_r = float(max_units)
        r = float(min_units)
        s_max = int(
            min(budget / big_r - 1, int(np.floor(utils.log_eta(big_r / r,
                                                               eta)))))
        s = s_max
        best_val = 1.
        track_valid = np.array([1.])
        track_test = np.array([1.])
        print('s_max = %i' % s_max)

        # inner loop
        while s >= 0 and utils.s_to_m(start_time,
                                      timeit.default_timer()) < runtime:
            # specify the number of configurations
            n = int(budget / big_r * eta**s / (s + 1.))

            if n > 0:
                i = 0
                while n * big_r * (i + 1.) * eta**(-i) > budget:
                    i += 1

                if s_run is None or i == s_run:
                    print('s = %d, n = %d' % (i, n))
                    arms, result, track_valid, track_test = \
                        ttts(model, resource_type, params, n, i, budget, director,
                             rng=rng, data=data, test=test, track_valid=track_valid, track_test=track_test,
                             problem=problem, verbose=False)
                    results[(k, s)] = arms

                    if resource_type == 'epochs':
                        if verbose:
                            print("k = " + str(k) + ", lscale = " + str(s) +
                                  ", validation error = " + str(result[2]) +
                                  ", test error = " + str(result[3]) +
                                  ", best arm dir: " + result[0]['dir'])

                        if result[2] < best_val:
                            best_val = result[2]
                            # best_n = n
                            # best_i = i
                            # best_arm = result[0]
                    elif resource_type == 'iterations':
                        if verbose:
                            print("k = " + str(k) + ", lscale = " + str(s) +
                                  ", validation error = " + str(result[1]) +
                                  ", best arm dir: " + result[0]['dir'])

                        if result[1] < best_val:
                            best_val = result[1]

                    durations.append([
                        utils.s_to_m(start_time, timeit.default_timer()),
                        result
                    ])
                    print(
                        "time elapsed: " +
                        str(utils.s_to_m(start_time, timeit.default_timer())))

                if s_run is None:
                    cPickle.dump([durations, results, track_valid, track_test],
                                 open(director + '/results.pkl', 'wb'))
                else:
                    cPickle.dump(
                        [durations, results, track_valid, track_test],
                        open(director + '/results_' + str(s_run) + '.pkl',
                             'wb'))
                # print(track_test)
                s -= 1
Ejemplo n.º 4
0
Archivo: ttts.py Proyecto: xuedong/hpo
def ttts(model,
         resource_type,
         params,
         n,
         i,
         budget,
         director,
         data,
         test,
         frac=0.5,
         dist='Bernoulli',
         rng=np.random.RandomState(12345),
         track_valid=np.array([1.]),
         track_test=np.array([1.]),
         problem='cont',
         verbose=False):
    """Top-Two Thompson Sampling.

    :param model: model to be trained
    :param resource_type: type of resource to be allocated
    :param params: hyperparameter search space
    :param n: number of configurations in this ttts phase
    :param i: the number of the bracket
    :param budget: number of resources
    :param director: where we store the results
    :param data: dataset
    :param test: test set
    :param frac: threshold in ttts
    :param dist: type of prior distribution
    :param rng: random state
    :param track_valid: initial track vector
    :param track_test: initial track vector
    :param problem: type of problem (classification or regression)
    :param verbose: verbose option
    :return: the dictionary of arms, the stored results and the vector of test errors
    """
    arms = model.generate_arms(n, director, params)
    remaining_arms = []
    if resource_type == 'epochs':
        remaining_arms = [
            list(a) for a in zip(arms.keys(), [0] * len(arms.keys()), [0] *
                                 len(arms.keys()), [0] * len(arms.keys()))
        ]
    elif resource_type == 'iterations':
        remaining_arms = [
            list(a) for a in zip(arms.keys(), [0] * len(arms.keys()), [0] *
                                 len(arms.keys()))
        ]
    current_track_valid = np.copy(track_valid)
    current_track_test = np.copy(track_test)

    succ = np.zeros(n)
    fail = np.zeros(n)
    num_pulls = np.zeros(n)
    rewards = np.zeros(n)
    # means = np.zeros(n)

    start_time = timeit.default_timer()
    # for a in range(n):
    #     arm_key = remaining_arms[a][0]
    #     num_pulls[a] = 1
    #     if resource_type == 'epochs':
    #         train_loss, val_err, test_err, current_track_valid, current_track_test = \
    #             model.run_solver(1, arms[arm_key], data, rng=rng,
    #                              track_valid=current_track_valid, track_test=current_track_test, verbose=verbose)
    #         rewards[a] = val_err
    #     elif resource_type == 'iterations':
    #         val_err, avg_loss, current_track_valid, current_track_test = \
    #             model.run_solver(1, arms[arm_key], data,
    #                              rng=rng, track_valid=current_track_valid,
    #                              track_test=current_track_test, problem=problem, verbose=verbose)
    #         rewards[a] = 1 + avg_loss

    # best = 0
    for _ in range(int(budget)):
        # means = rewards / num_pulls
        # best = np.random.choice(np.flatnonzero(means == means.max()))

        # print(rewards)
        ts = np.zeros(n)
        for a in range(n):
            if dist == 'Bernoulli':
                alpha_prior = 1
                beta_prior = 1
                ts[a] = beta.rvs(alpha_prior + succ[a],
                                 beta_prior + fail[a],
                                 size=1)[0]

        idx_i = np.argmax(ts)
        # print(idx_i)
        # print("\n"+str(ts[idx_i])+"\n")
        if np.random.rand() > frac:
            idx_j = idx_i
            threshold = 10000
            count = 0
            while idx_i == idx_j and count < threshold:
                ts = np.zeros(n)
                if dist == 'Bernoulli':
                    alpha_prior = 1
                    beta_prior = 1
                    for a in range(n):
                        # if rewards[a] >= 1 or rewards[a] <= 0:
                        #     trial = bernoulli.rvs(0.5)
                        # else:
                        #     trial = bernoulli.rvs(rewards[a])
                        # if trial == 1:
                        #     succ[a] += 1
                        # else:
                        #     fail[a] += 1
                        ts[a] = beta.rvs(alpha_prior + succ[a],
                                         beta_prior + fail[a],
                                         size=1)[0]
                idx_j = np.argmax(ts)
                count += 1
                # print(str(idx_j)+": "+str(ts[idx_j]))
            if idx_i != idx_j:
                idx_i = idx_j
            else:
                _, idx_j = utils.second_largest(list(ts))
                idx_i = idx_j

        if rewards[idx_i] >= 1 or rewards[idx_i] <= 0:
            trial = bernoulli.rvs(0.5)
        else:
            trial = bernoulli.rvs(rewards[idx_i])
        if trial == 1:
            succ[idx_i] += 1
        else:
            fail[idx_i] += 1

        if resource_type == 'epochs':
            arm_key = remaining_arms[int(idx_i)][0]
            classifier = cPickle.load(
                open(arms[arm_key]['dir'] + '/best_model.pkl', 'rb'))
            train_loss, val_err, test_err, current_track_valid, current_track_test = \
                model.run_solver(1, arms[arm_key], data,
                                 rng=rng, classifier=classifier,
                                 track_valid=current_track_valid, track_test=current_track_test,
                                 verbose=verbose)
            rewards[idx_i] = val_err
            num_pulls[idx_i] += 1

            if verbose:
                print(arm_key, train_loss, val_err, test_err,
                      utils.s_to_m(start_time, timeit.default_timer()))

            arms[arm_key]['results'].append(
                [num_pulls[idx_i], train_loss, val_err, test_err])
            remaining_arms[int(idx_i)][1] = train_loss
            remaining_arms[int(idx_i)][2] = val_err
            remaining_arms[int(idx_i)][3] = test_err
        elif resource_type == 'iterations':
            arm_key = remaining_arms[int(idx_i)][0]
            val_err, avg_loss, current_track_valid, current_track_test = \
                model.run_solver(1, arms[arm_key], data, test,
                                 rng=rng, track_valid=current_track_valid,
                                 track_test=current_track_test, problem=problem, verbose=verbose)
            rewards[idx_i] = 1 + avg_loss
            num_pulls[idx_i] += 1

            if verbose:
                print(arm_key, val_err,
                      utils.s_to_m(start_time, timeit.default_timer()))

            arms[arm_key]['results'].append(
                [num_pulls[idx_i], val_err, avg_loss])
            remaining_arms[int(idx_i)][1] = val_err
            remaining_arms[int(idx_i)][2] = avg_loss

    if resource_type == 'epochs':
        remaining_arms = sorted(remaining_arms, key=lambda a: a[2])
    elif resource_type == 'iterations':
        remaining_arms = sorted(remaining_arms, key=lambda a: a[2])

    # TODO: this best arm output is wrong in the 'iteration' case, but it does not affect the final output figure
    best_arm = arms[remaining_arms[0][0]]

    result = []
    if resource_type == 'epochs':
        result = [
            best_arm, remaining_arms[0][1], remaining_arms[0][2],
            remaining_arms[0][3]
        ]
    elif resource_type == 'iterations':
        result = [best_arm, remaining_arms[0][1], remaining_arms[0][2]]

    return arms, result, current_track_valid, current_track_test
Ejemplo n.º 5
0
def sh_finite(model,
              resource_type,
              params,
              n,
              i,
              eta,
              big_r,
              director,
              data,
              test,
              rng=np.random.RandomState(12345),
              track_valid=np.array([1.]),
              track_test=np.array([1.]),
              problem='cont',
              verbose=False):
    """Successive halving.

    :param model: model to be trained
    :param resource_type: type of resource to be allocated
    :param params: hyperparameter search space
    :param n: number of configurations in this successive halving phase
    :param i: the number of the bracket
    :param eta: elimination proportion
    :param big_r: number of resources
    :param director: where we store the results
    :param data: dataset
    :param test: test set
    :param rng: random state
    :param track_valid: initial track vector
    :param track_test: initial track vector
    :param problem: type of problem (classification or regression)
    :param verbose: verbose option
    :return: the dictionary of arms, the stored results and the vector of test errors
    """
    arms = model.generate_arms(n, director, params)
    remaining_arms = []
    if resource_type == 'epochs':
        remaining_arms = [
            list(a) for a in zip(arms.keys(), [0] * len(arms.keys()), [0] *
                                 len(arms.keys()), [0] * len(arms.keys()))
        ]
    elif resource_type == 'iterations':
        remaining_arms = [
            list(a) for a in zip(arms.keys(), [0] * len(arms.keys()), [0] *
                                 len(arms.keys()))
        ]
    current_track_valid = np.copy(track_valid)
    current_track_test = np.copy(track_test)

    for l in range(i + 1):
        num_pulls = int(big_r * eta**(l - i))
        num_arms = int(n * eta**(-l))
        print('%d\t%d' % (num_arms, num_pulls))
        for a in range(len(remaining_arms)):
            start_time = timeit.default_timer()
            arm_key = remaining_arms[a][0]

            if verbose:
                print(arms[arm_key])

            if resource_type == 'epochs':
                if not os.path.exists(arms[arm_key]['dir'] +
                                      '/best_model.pkl'):
                    train_loss, val_err, test_err, current_track_valid, current_track_test = \
                        model.run_solver(num_pulls, arms[arm_key], data,
                                         rng=rng, track_valid=current_track_valid, track_test=current_track_test,
                                         verbose=verbose)
                else:
                    classifier = cPickle.load(
                        open(arms[arm_key]['dir'] + '/best_model.pkl', 'rb'))
                    train_loss, val_err, test_err, current_track_valid, current_track_test = \
                        model.run_solver(num_pulls, arms[arm_key], data,
                                         rng=rng, classifier=classifier,
                                         track_valid=current_track_valid, track_test=current_track_test,
                                         verbose=verbose)

                if verbose:
                    print(arm_key, train_loss, val_err, test_err,
                          utils.s_to_m(start_time, timeit.default_timer()))

                arms[arm_key]['results'].append(
                    [num_pulls, train_loss, val_err, test_err])
                remaining_arms[a][1] = train_loss
                remaining_arms[a][2] = val_err
                remaining_arms[a][3] = test_err
            elif resource_type == 'iterations':
                val_err, avg_loss, current_track_valid, current_track_test = \
                    model.run_solver(num_pulls, arms[arm_key], data, test,
                                     rng=rng, track_valid=current_track_valid,
                                     track_test=current_track_test, problem=problem, verbose=verbose)

                if verbose:
                    print(arm_key, val_err,
                          utils.s_to_m(start_time, timeit.default_timer()))

                arms[arm_key]['results'].append([num_pulls, val_err, avg_loss])
                remaining_arms[a][1] = val_err
                remaining_arms[a][2] = avg_loss
                # print(avg_loss)

        if resource_type == 'epochs':
            remaining_arms = sorted(remaining_arms, key=lambda a: a[2])
        elif resource_type == 'iterations':
            remaining_arms = sorted(remaining_arms, key=lambda a: a[2])

        n_k1 = int(n * eta**(-l - 1))
        if i - l - 1 >= 0:
            # for k in range(n_k1, len(remaining_arms)):
            # arm_dir = arms[remaining_arms[k][0]]['dir']
            # files = os.listdir(arm_dir)
            remaining_arms = remaining_arms[0:n_k1]
    best_arm = arms[remaining_arms[0][0]]

    result = []
    if resource_type == 'epochs':
        result = [
            best_arm, remaining_arms[0][1], remaining_arms[0][2],
            remaining_arms[0][3]
        ]
    elif resource_type == 'iterations':
        result = [best_arm, remaining_arms[0][1], remaining_arms[0][2]]

    return arms, result, current_track_valid, current_track_test