Ejemplo n.º 1
0
def create_masks(bldg_footprints_shp=BUILDING_SHAPEFILE):
    '''Create masks for images in a directory given the building footprints shapefile
	Args:
		bldg_footprints_shp: building footprint shapefile
	'''
    files = files_absolute_path(INPUT_PATH)
    with fiona.open(bldg_footprints_shp, "r") as shapefile:
        geoms = [feature["geometry"] for feature in shapefile]
    for file in files:
        out_file = get_outfile(file, MASK_BASE_PATH)
        mask, mask_meta = create_one_mask(file, geoms)
        save_mask(out_file, mask, mask_meta)
Ejemplo n.º 2
0
    def evaluate_query_set(self, query_set_dict, has_masks, distance_eq):
        gt = query_set_dict["gt"]
        predictions = []

        for file, im in query_set_dict["images"].items():

            mask = None
            if has_masks:
                mask_filename = os.path.join(
                    self.output_folder,
                    file.split("/")[-1].split(".")[0] + ".png",
                )
                im, mask = mask_background(im)
                gt_mask = query_set_dict["masks"][file.replace("jpg", "png")]
                self.calc_mask_metrics(gt_mask[..., 0] / 255, mask / 255)
                if self.opt.save:
                    save_mask(mask_filename, mask)

            fv = self.calc_FV_query(im, mask)
            distances = calculate_distances(self.feature_vector_protoypes, fv,
                                            distance_eq)

            predictions.append(list(distances.argsort()[:10]))

        if self.opt.save:
            save_predictions(
                os.path.join(
                    self.output_folder,
                    "result_{}.pkl".format(int(has_masks) + 1),
                ),
                predictions,
            )

        map_k = mapk(gt, predictions)

        return map_k
Ejemplo n.º 3
0
def eval_set(loader, gt_correspondences, bbdd_fvs, opt):
    masks_metrics = {"precision": [], "recall": [], "f1": []}
    ious = []
    predictions = []
    set_bboxes = []
    for name, query_image, gt_mask in loader:
        if opt.apply_denoise:
            query_image, Noise_level_before, Noise_level_after, blur_type_last = detect_denoise(
                query_image, opt.blur_type)
        # transform to another color space
        multiple_painting, split_point, bg_mask = detect_paintings(query_image)
        bboxes, bbox_mask = detect_bboxes(query_image)
        res_mask = bg_mask.astype(bool) ^ bbox_mask.astype(
            bool) if loader.detect_bboxes else bg_mask
        if loader.compute_masks:
            if loader.evaluate:
                calc_mask_metrics(masks_metrics, gt_mask / 255, bg_mask)
            if opt.save:
                mask_name = name.split("/")[-1].replace(".jpg", ".png")
                save_mask(
                    os.path.join(opt.output,
                                 loader.root.split("/")[-1], mask_name),
                    res_mask * 255)

        # cropped sets, no need to mask image for retrieval
        if gt_mask is None:
            res_mask = None
        if loader.detect_bboxes:
            set_bboxes.append(bboxes)

        # change colorspace before computing feature vector
        query_image = transform_color(
            query_image, opt.color) if opt.color is not None else query_image
        if multiple_painting and gt_mask is not None:
            im_preds = []
            left_paint = np.zeros_like(res_mask)
            right_paint = np.zeros_like(res_mask)

            left_paint[:, split_point:] = res_mask[:, split_point:]
            right_paint[:, :split_point] = res_mask[:, :split_point]

            res_masks = [left_paint, right_paint]
            for submasks in res_masks:
                query_fv = calc_FV(query_image, opt, submasks).ravel()
                distances = calculate_distances(bbdd_fvs,
                                                query_fv,
                                                mode=opt.dist)
                im_preds.append((distances.argsort()[:10]).tolist())
            predictions.append(im_preds)

        else:
            query_fv = calc_FV(query_image, opt, res_mask).ravel()
            distances = calculate_distances(bbdd_fvs, query_fv, mode=opt.dist)

            predictions.append((distances.argsort()[:10]).tolist())

    if opt.save:
        save_predictions(
            "{}/{}/result.pkl".format(opt.output,
                                      loader.root.split("/")[-1]), predictions)
        save_predictions(
            "{}/{}/text_boxes.pkl".format(opt.output,
                                          loader.root.split("/")[-1]),
            set_bboxes)

    map_k = {
        i: mapk(gt_correspondences, predictions, k=i)
        for i in [10, 3, 1]
    } if loader.evaluate else None
    avg_mask_metrics = averge_masks_metrics(
        masks_metrics) if loader.evaluate else None

    return map_k, avg_mask_metrics
Ejemplo n.º 4
0
    result = cv2.morphologyEx(result, cv2.MORPH_CLOSE, kernel)
    result = cv2.medianBlur(result, 17)
    result = cv2.morphologyEx(result, cv2.MORPH_CLOSE, kernel)
    return result


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Script for segmentation of Gall Bladder Images")
    parser.add_argument("--img_path", type=str, default="img/", help="Path for the image folder")
    parser.add_argument("--det_path", type=str, default="det/", help="Path for the output masks folder")
    args = parser.parse_args()
    
    if(not os.path.exists(args.det_path)):
        os.mkdir(args.det_path)

    path = os.walk(args.img_path)
    for _, _, files in path:
        for file in files:
            output_name = file.split(".")[0] + ".png"
            image = load_image(args.img_path + file)
            raw_image = image.copy()

            kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
            image = cv2.filter2D(image, -1, kernel)
            image = cv2.GaussianBlur(image, (5, 5), 0)

            mask = segment_image(image, raw_image)
            # plot_image(mask)
            save_mask(mask, args.det_path, output_name)
            print("++++++++++++++++++++++++++++++++++++++++++++++++++++++")
Ejemplo n.º 5
0
for file in file_list:
    with rasterio.open(file, 'r') as ds:
        image = ds.read()  # read all raster values
        image_meta = ds.meta.copy()

    H = image.shape[1]
    W = image.shape[2]
    image_meta.update({
        "driver": "GTiff",
        "height": H,
        "width": W,
        "transform": ds.transform,
        "count": 1
    })

    prediction = make_prediction_cropped(unet_model,
                                         image,
                                         initial_size=(224, 224),
                                         final_size=(224 - 20, 224 - 20),
                                         num_masks=1,
                                         num_channels=3)
    predicted_mask = pred_mask(prediction, 0.5)

    # Post-processing
    image_denoise = grow(predicted_mask, 10)
    image_grow = denoise(image_denoise, 30)

    # Save predicted mask
    out_file = get_outfile(file, OUTPUT_PREDICTED_MASK)
    save_mask(out_file, image_grow, image_meta)
Ejemplo n.º 6
0
            beta - smoothness term \n\
            tau - step for gradient descent \n\
            w_line - intensity weight for external energy \n\
            w_edge - edge weight for external energy \n\
            kappa - balloon force weight')
        sys.exit(0)

    input_image, initial_snake, \
    output_image, alpha, beta, \
    tau, w_line, w_edge, kappa = tuple(sys.argv[1:10])

    image = skimage.img_as_float(skio.imread(input_image))

    X = np.array([
        np.array(x.replace('\n', '').split(' ')) for x in open(initial_snake)
    ]).astype(np.float64)

    C = active_contours(image, X[:-1], alpha, beta, tau, w_line, w_edge, kappa)
    C = np.append(C, [C[0]], axis=0)

    #utils.save_mask_withimg('result.png', C, np.uint8(image * 255))
    utils.save_mask(output_image, C, np.uint8(image * 255))
    iou = calc_iou(output_image, input_image.replace('.png', '_mask.png'))
    print(iou)

    #X = active_contour(image, X, float(alpha), float(beta), float(w_line), float(w_edge), float(tau))

    #utils.save_mask_withimg(output_image, X, np.uint8(image * 255))
    #utils.save_mask('genmask.png', X, np.uint8(image * 255))
    #calc_iou('genmask.png', 'images/astranaut_mask.png')