Ejemplo n.º 1
0
def create_dataset(speechfolder,
                   peaksfolder,
                   window,
                   stride,
                   file_slice=slice(0, 10)):
    speechfiles = sorted(glob(os.path.join(speechfolder, '*.npy')))[file_slice]
    peakfiles = sorted(glob(os.path.join(peaksfolder, '*.npy')))[file_slice]

    speech_data = [np.load(f) for f in speechfiles]
    peak_data = [np.load(f) for f in peakfiles]

    speech_data = np.concatenate(speech_data)
    peak_data = np.concatenate(peak_data)
    indices = np.arange(len(speech_data))

    speech_windowed_data = strided_app(speech_data, window, stride)
    peak_windowed_data = strided_app(peak_data, window, stride)
    indices = strided_app(indices, window, stride)

    peak_distance = np.array([
        np.nonzero(t)[0][0] if len(np.nonzero(t)[0]) != 0 else -1
        for t in peak_windowed_data
    ])

    peak_indicator = (peak_distance != -1) * 1.0

    return speech_windowed_data, peak_distance, peak_indicator, indices, peak_data
Ejemplo n.º 2
0
def custom_loader(speechfolder, eggfolder, window, stride, select=None):
    speechfiles = sorted(glob(os.path.join(speechfolder, "*.npy")))
    eggfiles = sorted(glob(os.path.join(eggfolder, "*.npy")))

    if select is not None:
        ind = np.random.permutation(len(speechfiles))
        ind = ind[:select]
        speechfiles = [speechfiles[i] for i in ind]
        eggfiles = [eggfiles[i] for i in ind]
        print("Selected {} files".format(select))

    speech_data = [np.load(f) for f in speechfiles]
    egg_data = [np.load(f) for f in eggfiles]

    for i in range(len(egg_data)):
        egg_data[i] = egg_data[i] / np.max(np.abs(egg_data[i]))

    for i in range(len(speech_data)):
        speech_data[i] = speech_data[i] / np.max(np.abs(speech_data[i]))

    speech_data = np.concatenate(speech_data)
    egg_data = np.concatenate(egg_data)

    speech_windowed_data = strided_app(speech_data, window, stride)
    egg_windowed_data = strided_app(egg_data, window, stride)

    return speech_windowed_data, egg_windowed_data
Ejemplo n.º 3
0
    def _create_dataset(speechfiles, peakfiles, window, stride):

        speech_data = [np.load(f) for f in speechfiles]
        peak_data = [np.load(f) for f in peakfiles]

        speech_data = np.concatenate(speech_data)
        peak_data = np.concatenate(peak_data)

        speech_windowed_data = strided_app(speech_data, window, stride)
        peak_windowed_data = strided_app(peak_data, window, stride)

        peak_distance = np.array([
            np.nonzero(t)[0][0] if len(np.nonzero(t)[0]) != 0 else -1
            for t in peak_windowed_data
        ])

        peak_indicator = (peak_distance != -1) * 1.0

        return speech_windowed_data, peak_distance, peak_indicator
Ejemplo n.º 4
0
def create_dataset(speechfolder,
                   peaksfolder,
                   window,
                   stride,
                   file_slice=slice(0, 10)):
    speechfiles = sorted(glob(os.path.join(speechfolder, '*.npy')))[file_slice]
    peakfiles = sorted(glob(os.path.join(peaksfolder, '*.npy')))[file_slice]

    # speechfiles = speechfiles[:10]
    # peakfiles = peakfiles[:10]
    speech_data = [np.load(f) for f in speechfiles]
    peak_data = [np.load(f) for f in peakfiles]

    speech_data = np.concatenate(speech_data)
    peak_data = np.concatenate(peak_data)
    indices = np.arange(len(speech_data))

    speech_windowed_data = strided_app(speech_data, window, stride)
    peak_windowed_data = strided_app(peak_data, window, stride)
    indices = strided_app(indices, window, stride)
    return speech_windowed_data, indices, peak_data
Ejemplo n.º 5
0
    def update_lists(self):

        self.example_list = []

        for i, clss in enumerate(self.class2file):
            clss_file_list = np.random.permutation(self.class2file[clss])

            idxs = strided_app(np.arange(len(clss_file_list)), 4, 4)

            for idxs_list in idxs:
                if len(idxs_list) == 4:
                    self.example_list.append(
                        [clss_file_list[file_idx] for file_idx in idxs_list])
                    self.example_list[-1].append(clss)
                    self.example_list[-1].append(self.clss2label[clss])