Ejemplo n.º 1
0
def buildings(store, households, jobs, building_sqft_per_job, settings):
    df = store['buildings']

    if settings.get("set_nan_price_to_zero", False):
        for col in ["residential_price", "non_residential_price"]:
            df[col] = 0

    if settings.get("reconcile_residential_units_and_households", False):
        # prevent overfull buildings (residential)
        df["residential_units"] = pd.concat(
            [df.residential_units, households.building_id.value_counts()],
            axis=1).max(axis=1)

    if settings.get("reconcile_non_residential_sqft_and_jobs", False):
        # prevent overfull buildings (non-residential)
        tmp_df = pd.concat([
            df.non_residential_sqft,
            jobs.building_id.value_counts() *
            df.building_type_id.fillna(-1).map(building_sqft_per_job)
        ], axis=1)
        df["non_residential_sqft"] = tmp_df.max(axis=1).apply(np.ceil)

    fill_nas_cfg = settings.get("table_reprocess", None)
    if fill_nas_cfg is not None:
        fill_nas_cfg = fill_nas_cfg.get("buildings", None)
    if fill_nas_cfg is not None:
        df = utils.table_reprocess(fill_nas_cfg, df)

    return df
Ejemplo n.º 2
0
def buildings(store, households, jobs, building_sqft_per_job, settings):
    df = store['buildings']

    if settings.get("set_nan_price_to_zero", False):
        for col in ["residential_price", "non_residential_price"]:
            df[col] = 0

    if settings.get("reconcile_residential_units_and_households", False):
        # prevent overfull buildings (residential)
        df["residential_units"] = pd.concat(
            [df.residential_units,
             households.building_id.value_counts()],
            axis=1).max(axis=1)

    if settings.get("reconcile_non_residential_sqft_and_jobs", False):
        # prevent overfull buildings (non-residential)
        tmp_df = pd.concat([
            df.non_residential_sqft,
            jobs.building_id.value_counts() *
            df.building_type_id.fillna(-1).map(building_sqft_per_job)
        ],
                           axis=1)
        df["non_residential_sqft"] = tmp_df.max(axis=1).apply(np.ceil)

    fill_nas_cfg = settings.get("table_reprocess", None)
    if fill_nas_cfg is not None:
        fill_nas_cfg = fill_nas_cfg.get("buildings", None)
    if fill_nas_cfg is not None:
        df = utils.table_reprocess(fill_nas_cfg, df)

    return df
Ejemplo n.º 3
0
def jobs(store, settings):
    df = store['jobs']

    if settings.get("remove_invalid_building_ids", True):
        # have to do it this way to prevent circular reference
        df.building_id.loc[~df.building_id.isin(store['buildings'].index)] = -1

    fill_nas_cfg = settings.get("table_reprocess", {}).get("jobs", None)
    if fill_nas_cfg is not None:
        df = utils.table_reprocess(fill_nas_cfg, df)

    return df
Ejemplo n.º 4
0
def jobs(store, settings):
    df = store['jobs']

    if settings.get("remove_invalid_building_ids", True):
        # have to do it this way to prevent circular reference
        df.building_id.loc[~df.building_id.isin(store['buildings'].index)] = -1

    fill_nas_cfg = settings.get("table_reprocess", {}).get("jobs", None)
    if fill_nas_cfg is not None:
        df = utils.table_reprocess(fill_nas_cfg, df)

    return df