Ejemplo n.º 1
0
    def display(self, i):
        input_tensor, output_tensor = self.__getitem__(i)
        input_tensor = self.inverse_transform(input_tensor)
        output_tensor = self.inverse_transform(output_tensor)
        input_image = tensor2image(input_tensor)
        output_image = tensor2image(output_tensor)

        display_image_side(input_image, output_image, show=True)
 def display(self, i):
     input_tensor, output_tensor = self.__getitem__(i)
     input_image = tensor2image(
         self.inverse_transform(input_tensor)).astype(np.uint8)
     output_image = tensor2image(
         self.inverse_transform(output_tensor)).astype(np.uint8)
     fig, ax = plt.subplots(1, 2)
     ax[0].imshow(input_image)
     ax[1].imshow(output_image)
     plt.show()
Ejemplo n.º 3
0
def infer(netG_B2A, im_path):
    transforms_ = [
        transforms.Resize(args.size, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, ), (0.5, ))
    ]
    transforms_ = transforms.Compose(transforms_)
    real_im = Image.open(im_path)
    data = transforms_(real_im)
    if args.cuda:
        data = data.cuda()
    data = data.unsqueeze(0)
    data = data[:, :args.nc, :, :]

    # do the forward pass
    fake_data = netG_B2A(data)
    fake_im = tensor2image(
        fake_data.detach(),
        np.array([0.5 for _ in range(args.nc)], dtype='float32'),
        np.array([0.5 for _ in range(args.nc)], dtype='float32'))
    fake_im = np.transpose(fake_im, (1, 2, 0))
    fake_im = fake_im[:, :, ::-1]
    out_path = os.path.join(args.output_dir,
                            im_path[len(args.dataset_root_path) + 1:])
    cv2.imwrite(out_path, fake_im)
    return
def visualize_predictions(test_loader, G, step, writer, mask=False):
    if mask:
        n_samples = len(test_loader.dataset)
        input_batch_numpy = []
        prediction_batch_numpy = []
        for j in range(10):
            random_index = int(np.random.random() * n_samples)
            inputs, _ = test_loader.dataset[random_index]
            inputs = inputs.unsqueeze(dim=0)
            predictions, mask, copied, synthesized, weighted_synthesized = G(
                inputs)
            images_numpy = [
                255 * ((0.5 * utils.tensor2image(input_tensor.cpu())[0]) + 0.5)
                for input_tensor in [
                    inputs, predictions, mask, copied, synthesized,
                    weighted_synthesized
                ]
            ]
            figure = utils.display_images(images_numpy)
            writer.add_figure(f'translations_{step}_{j}',
                              figure,
                              global_step=step)
    else:
        n_samples = len(test_loader.dataset)
        input_batch_numpy = []
        prediction_batch_numpy = []
        for j in range(10):
            random_index = int(np.random.random() * n_samples)
            inputs, _ = test_loader.dataset[random_index]
            inputs = inputs.unsqueeze(dim=0)
            predictions = G(inputs).cpu()
            inputs_numpy = utils.tensor2image(inputs.cpu())[0]
            predictions_numpy = utils.tensor2image(predictions.cpu())[0]
            inputs_numpy = (inputs_numpy * 0.5 + 0.5) * 255
            predictions_numpy = (predictions_numpy * 0.5 + 0.5) * 255
            figure = utils.display_image_side(inputs_numpy, predictions_numpy)
            writer.add_figure(f'translations_{step}_{j}',
                              figure,
                              global_step=step)
Ejemplo n.º 5
0
 def save_images(self, images):
     for name, image in images.items():
         print(self.image_name)
         save_dir = os.path.join(self.args.save_dir, 'result_images')
         if not os.path.exists(save_dir):
             os.makedirs(save_dir)
         save_filename = '%s%s_epoch%s.png' % (
             name, self.image_name[0].split(".")[0], self.args.load_epoch
         )  # batch_size=1
         save_path = os.path.join(save_dir, save_filename)
         image = tensor2image(image)
         pil_image = Image.fromarray(image.squeeze())
         pil_image.save(save_path)
Ejemplo n.º 6
0
    def test(self, filepath, generate_images=True):
        # load training info
        if filepath is not None:
            self._load(filepath)

        if self.args.eval_mode:
            self.model.eval()
        else:
            self.model.train()
        with torch.no_grad():
            mse = 0.0
            for iteration, batch in enumerate(self.test_dataloader):
                real_a, real_b = batch[0].to(self.device), batch[1].to(self.device)
                pred_b = self.model.generate(real_a)
                mse += self.criterion_mse(pred_b, real_b).item()/len(self.test_dataloader)
                if generate_images:
                    for i in range(pred_b.shape[0]):
                        im = tensor2image(pred_b[i])
                        im.save(self.args.results_dir+'/'+str(self.args.batch_size*iteration+i+1)+'.jpg')
        print('Epoch[{0}] - MSE: {1}'.format(
            self.epoch, mse
        ))
Ejemplo n.º 7
0
def gen_images(nets, dataloader, opt):
    def _vbound(divider=4):
        c, h, w = opt.input_nc, opt.size, opt.size
        out_shape = c, int(h // divider), int(w * 10)
        return torch.full(out_shape, fill_value=0.8)

    def _hbound(divider=4):
        """
        Args:
            shape: Either size = 2 for gray image, or 3 for RGB image.
        """
        c, h, w = opt.input_nc, opt.size, opt.size
        out_shape = c, h, int(w // divider)
        return torch.full(out_shape, fill_value=0.8)

    netG_A2B, netG_B2A = nets

    # Inputs & targets memory allocation
    Tensor = torch.cuda.FloatTensor if opt.cuda else torch.Tensor
    input_A = Tensor(opt.batchSize, opt.input_nc, opt.size, opt.size)
    input_B = Tensor(opt.batchSize, opt.output_nc, opt.size, opt.size)

    mask_scales = [str(scale)
                   for scale in get_mask_scales(opt)]  # ['0.5', '0.8', '1.0']

    total = min(len(dataloader), opt.max_n)
    for i, batch in tqdm(enumerate(dataloader), total=total):
        if i >= opt.max_n:
            break

        # Set model input
        real_A = Variable(input_A.copy_(batch['A']))
        real_B = Variable(input_B.copy_(batch['B']))

        if not opt.use_mask:
            # fake_B = 0.5 * (netG_A2B(real_A, mask=mask).data + 1.0)
            # fake_A = 0.5 * (netG_B2A(real_B, mask=mask).data + 1.0)
            fake_B = tensor2image(netG_A2B(real_A, mask=None))
            fake_A = tensor2image(netG_B2A(real_B, mask=None))
            save_image(fake_A, f'output/{opt.run_id}/A/{i+1:04d}.png')
            save_image(fake_B, f'output/{opt.run_id}/B/{i+1:04d}.png')
            continue

        masks = [
            gen_random_mask(size, shape=real_A.shape) for size in mask_scales
        ]

        for scale, mask in zip(mask_scales, masks):
            fake_B = tensor2image(netG_A2B(real_A, mask=mask))
            fake_A = tensor2image(netG_B2A(real_B, mask=mask))
            save_image(
                fake_A,
                f'output/{opt.run_id}/A/scale={float(scale):.2f}/{i+1:04d}.png'
            )
            save_image(
                fake_B,
                f'output/{opt.run_id}/B/scale={float(scale):.2f}/{i+1:04d}.png'
            )

        if not opt.grid:
            continue

        grid = [_vbound()]
        for mask in masks:
            # Generate output
            fake_B = netG_A2B(real_A, mask=mask)
            fake_A = netG_B2A(real_B, mask=mask)
            recovered_A = netG_B2A(fake_B, mask=mask)
            recovered_B = netG_A2B(fake_A, mask=mask)
            same_A = netG_B2A(real_A, mask=mask)
            same_B = netG_A2B(real_B, mask=mask)

            images = [
                _hbound(),
                mask[0],

                # torch.ones_like(real_A[0]),  # separator
                _hbound(),
                tensor2image(real_A[0]),
                tensor2image(fake_B[0]),
                tensor2image(recovered_A[0]),
                tensor2image(same_A[0]),
                _hbound(),
                tensor2image(real_B[0]),
                tensor2image(fake_A[0]),
                tensor2image(recovered_B[0]),
                tensor2image(same_B[0]),
                _hbound(),
            ]

            grid.append(torch.cat(images, dim=2))  # cat on width
            grid.append(_vbound())
        grid = torch.cat(grid, dim=1)  # cat on height

        # Save image files
        save_image(grid, f'output/{opt.run_id}/grid/{i+1:04d}.png')
        recovered_ABA_test = netG_B2A(fake_AB_test)
        recovered_BAB_test = netG_A2B(fake_BA_test)

        test_product_name_A = batch_['img_A'][0]
        res_A = test_product_name_A.split("/")[-1]
        res_A = res_A.split(".")[0]

        # fn = os.path.join(output_path_, str(j))
        fn_A = os.path.join(output_path_, res_A)

        test_product_name_B = batch_['img_B'][0]
        res_B = test_product_name_B.split("/")[-1]
        res_B = res_B.split(".")[0]

        # fn = os.path.join(output_path_, str(j))
        fn_B = os.path.join(output_path_, res_B)

        # A_test = np.hstack([tensor2image(real_A_test[0]), tensor2image(fake_AB_test[0]),
        #                     tensor2image(recovered_ABA_test[0])])
        # B_test = np.hstack([tensor2image(real_B_test[0]), tensor2image(fake_BA_test[0]),
        #                     tensor2image(recovered_BAB_test[0])])

        A_test = np.hstack([tensor2image(fake_AB_test[0])])
        B_test = np.hstack([tensor2image(fake_BA_test[0])])

        imageio.imwrite(fn_A + '_A.jpg', A_test)
        imageio.imwrite(fn_B + '_B.jpg', B_test)

    else:
        break
            for j, batch_ in enumerate(dataloader_test):

                if j < 60:
                    real_A_test = Variable(input_A.copy_(batch_['A']))
                    real_B_test = Variable(input_B.copy_(batch_['B']))

                    fake_AB_test = netG_A2B(real_A_test)
                    fake_BA_test = netG_B2A(real_B_test)

                    recovered_ABA_test = netG_B2A(fake_AB_test)
                    recovered_BAB_test = netG_A2B(fake_BA_test)

                    fn = os.path.join(output_path_, str(j))
                    A_test = np.hstack([
                        tensor2image(real_A_test[0]),
                        tensor2image(fake_AB_test[0]),
                        tensor2image(recovered_ABA_test[0])
                    ])
                    B_test = np.hstack([
                        tensor2image(real_B_test[0]),
                        tensor2image(fake_BA_test[0]),
                        tensor2image(recovered_BAB_test[0])
                    ])
                    imageio.imwrite(fn + '_A.jpg', A_test)
                    imageio.imwrite(fn + '_B.jpg', B_test)

                    # imageio.imwrite(fn + '.A.jpg', tensor2image(real_A_test[0]))
                    # imageio.imwrite(fn + '.B.jpg', tensor2image(real_B_test[0]))
                    # imageio.imwrite(fn + '.BA.jpg', tensor2image(fake_BA_test[0]))
                    # imageio.imwrite(fn + '.AB.jpg', tensor2image(fake_AB_test[0]))
Ejemplo n.º 10
0
            safe_mkdirs(output_path_)

            for j, batch_ in enumerate(dataloader_test):

                if j < 60:
                    real_A_test = Variable(input_A.copy_(batch_['A']))
                    real_B_test = Variable(input_B.copy_(batch_['B']))

                    fake_AB_test = netG_A2B(real_A_test)
                    fake_BA_test = netG_B2A(real_B_test)

                    recovered_ABA_test = netG_B2A(fake_AB_test)
                    recovered_BAB_test = netG_A2B(fake_BA_test)

                    fn = os.path.join(output_path_, str(j))
                    A_test = np.hstack([tensor2image(real_A_test[0]), tensor2image(fake_AB_test[0]),
                                        tensor2image(recovered_ABA_test[0])])
                    B_test = np.hstack([tensor2image(real_B_test[0]), tensor2image(fake_BA_test[0]),
                                        tensor2image(recovered_BAB_test[0])])
                    imageio.imwrite(fn + '_A.jpg', A_test)
                    imageio.imwrite(fn + '_B.jpg', B_test)

                    # imageio.imwrite(fn + '.A.jpg', tensor2image(real_A_test[0]))
                    # imageio.imwrite(fn + '.B.jpg', tensor2image(real_B_test[0]))
                    # imageio.imwrite(fn + '.BA.jpg', tensor2image(fake_BA_test[0]))
                    # imageio.imwrite(fn + '.AB.jpg', tensor2image(fake_AB_test[0]))
                    # imageio.imwrite(fn + '.ABA.jpg', tensor2image(recovered_ABA_test[0]))
                    # imageio.imwrite(fn + '.BAB.jpg', tensor2image(recovered_BAB_test[0]))
                else:
                    break
Ejemplo n.º 11
0
def training_mode(model_name):

    batch_size = 25

    train_loader = torch.utils.data.DataLoader(datasets.MNIST(
        '../data',
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.5, ), (0.5, ))])),
                                               batch_size=batch_size,
                                               shuffle=True)

    test_loader = torch.utils.data.DataLoader(datasets.MNIST(
        '../data',
        train=False,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.5, ), (0.5, ))])),
                                              batch_size=batch_size,
                                              shuffle=True)

    # Prepare unpaired image translation dataset

    X = np.array(
        [utils.tensor2image(image_batch) for image_batch, _ in train_loader])
    X = X.reshape(
        (X.shape[0] * X.shape[1], X.shape[2], X.shape[3], X.shape[4]))
    Y = np.array(X) * -1
    np.random.shuffle(Y)

    # utils.display_image(X[0])
    # utils.display_image(Y[0])

    X_train, X_test, Y_train, Y_test = train_test_split(X, Y)
    unsupervised_train_loader = data.DataLoader(data.TensorDataset(
        utils.image2tensor(X_train), utils.image2tensor(Y_train)),
                                                batch_size=1)
    unsupervised_test_loader = data.DataLoader(data.TensorDataset(
        utils.image2tensor(X_test), utils.image2tensor(Y_test)),
                                               batch_size=1)

    x, y = next(iter(unsupervised_train_loader))
    c = utils.tensor2image(x.cpu()[0:1])
    utils.display_image(c[0])

    # Initialize network and optimizers

    G = Generator(3)
    F = Generator(3)
    D_X = Discriminator(3)
    D_Y = Discriminator(3)

    G_optimizer = optim.Adam(G.parameters(), lr=1e-3)
    F_optimizer = optim.Adam(F.parameters(), lr=1e-3)
    D_X_optimizer = optim.Adam(D_X.parameters(), lr=1e-3)
    D_Y_optimizer = optim.Adam(D_Y.parameters(), lr=1e-3)
    writer = SummaryWriter(model_name)

    # Train network
    for epoch in range(1):
        train(epoch, G, F, D_X, D_Y, G_optimizer, F_optimizer, D_X_optimizer,
              D_Y_optimizer, unsupervised_train_loader, writer, test_loader)

    save_model(f'../models/{model_name}_G.pt', G, F,
               f'../models/{model_name}_F.pt')
Ejemplo n.º 12
0
def test(netG_B2A, netGaze):
    if netG_B2A is not None:
        netG_B2A.eval()
    netGaze.eval()
    out_vid = None
    pred_all = np.array([], dtype='int64')
    target_all = np.array([], dtype='int64')

    for idx, (data, target) in enumerate(test_loader):
        if args.cuda:
            data, target = data[:, :args.nc, :, :].cuda(), target.cuda()
        data, target = Variable(data), Variable(target)

        # do the forward pass
        if netG_B2A is not None:
            data = gaze2gan(data, test_loader.dataset.mean[0:args.nc],
                            test_loader.dataset.std[0:args.nc])
            fake_data = netG_B2A(data)
            fake_data = gan2gaze(fake_data,
                                 test_loader.dataset.mean[0:args.nc],
                                 test_loader.dataset.std[0:args.nc])
            scores, masks = netGaze(fake_data.repeat(1, int(3 / args.nc), 1,
                                                     1))
        else:
            data = gaze2gan(data, test_loader.dataset.mean[0:args.nc],
                            test_loader.dataset.std[0:args.nc])
            fake_data = gan2gaze(data, test_loader.dataset.mean[0:args.nc],
                                 test_loader.dataset.std[0:args.nc])
            scores, masks = netGaze(fake_data.repeat(1, int(3 / args.nc), 1,
                                                     1))

        if args.save_viz:
            im = tensor2image(
                data.repeat(1, int(3 / args.nc), 1, 1).detach(),
                np.array([0.5 for _ in range(args.nc)], dtype='float32'),
                np.array([0.5 for _ in range(args.nc)], dtype='float32'))
            im = np.transpose(im, (1, 2, 0))
            im = im[:, :, ::-1]
            im_wo = tensor2image(
                fake_data.repeat(1, int(3 / args.nc), 1, 1).detach(),
                test_loader.dataset.mean, test_loader.dataset.std)
            im_wo = np.transpose(im_wo, (1, 2, 0))
            im_wo = im_wo[:, :, ::-1]
            im_out = create_viz(im, im_wo, scores, masks, activity_classes)

            if out_vid is None:
                out_vid = cv2.VideoWriter(
                    os.path.join(args.output_dir, 'out.avi'),
                    cv2.VideoWriter_fourcc(*'XVID'), 5,
                    (im_out.shape[1], im_out.shape[0]))
            out_vid.write(im_out)

        scores = scores.view(-1, args.num_classes)
        pred = scores.data.max(1)[
            1]  # got the indices of the maximum, match them
        print('Done with image {} out {}...'.format(
            min(args.batch_size * (idx + 1), len(test_loader.dataset)),
            len(test_loader.dataset)))
        pred_all = np.append(pred_all, pred.cpu().numpy())
        target_all = np.append(target_all, target.cpu().numpy())

    micro_acc, macro_acc = plot_confusion_matrix(target_all, pred_all,
                                                 merged_activity_classes,
                                                 args.output_dir)
    print("\n------------------------")
    print("Micro-average accuracy = {:.2f}%".format(micro_acc))
    print("Macro-average accuracy = {:.2f}%\n------------------------".format(
        macro_acc))
    with open(os.path.join(args.output_dir, "logs.txt"), "a") as f:
        f.write("\n------------------------\n")
        f.write("Micro-average accuracy = {:.2f}%\n".format(micro_acc))
        f.write("Macro-average accuracy = {:.2f}%\n------------------------\n".
                format(macro_acc))

    if args.save_viz:
        out_vid.release()

    return micro_acc, macro_acc