Ejemplo n.º 1
0
 def set_heat(self, f):
     x = utils.vector(4)
     u = utils.vector(2)
     func = th.function([], f(0, x, u))
     def val(p):
         x.set_value(np.asarray([p[0], p[1], 0., 0.]))
         return func()
     self.heat = val
Ejemplo n.º 2
0
    def set_heat(self, f):
        x = utils.vector(4)
        u = utils.vector(2)
        func = th.function([], f(0, x, u))

        def val(p):
            x.set_value(np.asarray([p[0], p[1], 0., 0.]))
            return func()

        self.heat = val
Ejemplo n.º 3
0
    def reset(self):
        self.num_iters = 0

        self.players_head = [
            vector(2 * i, 0) for i in range(self.num_players)
        ]  ### TODO: player init
        self.players_body = [{self.players_head[i]}
                             for i in range(self.num_players)]
        self.players_dir = [vector(0, 1) for i in range(self.num_players)]
        self.observation = np.zeros(self.board_shape, dtype=np.int16)
        self.update_observation()
Ejemplo n.º 4
0
 def __init__(self, T, dyn):
     self.dyn = dyn
     self.T = T
     self.x0 = utils.vector(dyn.nx)
     self.u = [utils.vector(dyn.nu) for t in range(self.T)]
     self.x = []
     z = self.x0
     for t in range(T):
         z = dyn(z, self.u[t])
         self.x.append(z)
     self.next_x = th.function([], self.x[0])
 def __init__(self, T, dyn):
     self.dyn = dyn # dynamiken for systemet
     self.T = T # hur manga steg fram den ska kolla 
     self.x0 = utils.vector(dyn.nx) # state vektorn
     self.u = [utils.vector(dyn.nu) for t in range(self.T)] # matris for de nastkommande T stegen
     self.x = [] # vektor for alla states
     z = self.x0 
     for t in range(T): # hitta dynamiken for alla tidsteg den ska plannera for
         z = dyn(z, self.u[t])
         self.x.append(z)
     self.next_x = th.function([], self.x[0]) # konverterar grafen av states till en callable object
Ejemplo n.º 6
0
 def __init__(self, T, dyn):
     self.dyn = dyn
     self.T = T
     self.x0 = utils.vector(dyn.nx)
     self.u = [utils.vector(dyn.nu) for t in range(self.T)]
     self.x = []
     z = self.x0
     for t in range(T):
         z = dyn(z, self.u[t])
         self.x.append(z)
     self.next_x = th.function([], self.x[0])
Ejemplo n.º 7
0
 def dir4_to_a(self, dirr):
     assert (self.n == 4)
     a = None
     if dirr == vector(1, 0):
         a = 0
     elif dirr == vector(0, -1):
         a = 1
     elif dirr == vector(-1, 0):
         a = 2
     elif dirr == vector(0, 1):
         a = 3
     return int(a)
Ejemplo n.º 8
0
 def a_to_4dir(self, a):
     assert (self.n == 4)
     v = None
     if a == 0:
         v = vector(1, 0)
     elif a == 1:
         v = vector(0, -1)
     elif a == 2:
         v = vector(-1, 0)
     elif a == 3:
         v = vector(0, 1)
     return v
Ejemplo n.º 9
0
    def constrain(self, other_item, center):
        AB = utils.vector(self.point, other_item.line.point)

        n = self.normal
        if utils.dot(utils.vector(self.point, center), n) < 0:
            n = (-n[0], -n[1])

        v_n = utils.dot(other_item.line.direction, n)
        AB_n = utils.dot(AB, n)

        if v_n > 0:
            other_item.k.set_min(-AB_n / v_n)
        if v_n < 0:
            other_item.k.set_max(-AB_n / v_n)
 def __init__(self, Tu, dyn, step_per_u=2):
     self.dyn = dyn # dynamiken for systemet
     self.Tu = Tu
     self.step_per_u = step_per_u
     self.Tx = step_per_u*Tu
     #self.Tx = Tx # hur manga steg fram den ska kolla 
     self.x0 = utils.vector(dyn.nx) # state vektorn
     self.u = [utils.vector(dyn.nu) for t in range(self.Tu)] # matris for de nastkommande T stegen
     self.x = [] # vektor for alla states
     z = self.x0 
     for idx in range(Tu): # hitta dynamiken for alla tidsteg den ska plannera for
         for idx_u in range(step_per_u):
             z = dyn(z, self.u[idx])
             self.x.append(z)
     self.next_x = th.function([], self.x[0]) # konverterar grafen av states till en callable object
Ejemplo n.º 11
0
def move():
    "Move pacman and all ghosts."
    writer.undo()
    writer.write(state['score'])

    clear()

    if valid(pacman + aim):
        pacman.move(aim)

    index = offset(pacman)

    if tiles[index] == 1:
        tiles[index] = 2
        state['score'] += 1
        x = (index % 20) * 20 - 200
        y = 180 - (index // 20) * 20
        square(x, y)

    up()
    goto(pacman.x + 10, pacman.y + 10)
    dot(20, 'yellow')

    for point, course in ghosts:
        if valid(point + course):
            point.move(course)
        else:
            options = [
                vector(5, 0),
                vector(-5, 0),
                vector(0, 5),
                vector(0, -5),
            ]
            plan = choice(options)
            course.x = plan.x
            course.y = plan.y

        up()
        goto(point.x + 10, point.y + 10)
        dot(20, 'red')

    update()

    for point, course in ghosts:
        if abs(pacman - point) < 20:
            return

    ontimer(move, 100)
Ejemplo n.º 12
0
def move():
    "Update object positions."
    bird.y -= 5

    for ball in balls:
        ball.x -= 3

    if randrange(10) == 0:
        y = randrange(-199, 199)
        ball = vector(199, y)
        balls.append(ball)

    while len(balls) > 0 and not inside(balls[0]):
        balls.pop(0)

    if not inside(bird):
        draw(False)
        return

    for ball in balls:
        if abs(ball - bird) < 15:
            draw(False)
            return

    draw(True)
    ontimer(move, 50)
Ejemplo n.º 13
0
    def add_item(self, item):
        u = utils.vector(self.point, item.point)

        direction = utils.orthogonal(u)
        center = (.5 * (self.point[0] + item.point[0]),
                  .5 * (self.point[1] + item.point[1]))
        line = shapes.InfiniteLine(center, direction)
        new_item = OtherItem(item, line)

        keep_new_item = True
        others_to_remove = set()

        for other in self.others:
            other.line.constrain(new_item, self.point)
            new_item.line.constrain(other, self.point)

            if not other.is_valid():
                others_to_remove |= {other}

            if not new_item.is_valid():
                keep_new_item = False
                break

        self.others -= others_to_remove

        if keep_new_item:
            self.others |= {new_item}
            return new_item
        return None
Ejemplo n.º 14
0
    def __init__(self, id, tam_agente, cor=None):
        # add uma identificação única pro agente
        self._id = id
        self._tam_agente = tam_agente

        # add uma tartaruga específica pro agente
        self._turtle = Turtle()
        self._turtle.hideturtle()

        # define a cor do agente
        self._cor = cor
        # REQ
        # deve definir a cor do agente aleatoriamente (verde, vermelho, rosa, laranja e marrom)
        # se não for passado no construtor
        # é um gerador de percursos

        self._waze = None

        # add os seguintes comandos
        # TODO: Conferir estas direções
        # vector(1, 0) => direita
        # vector(-1, 0) => esquerda
        # vector(0, 1) => cima
        # vector(0, -1) => baixo
        self.direcao = vector(1, 0)  # este vector significa direita
Ejemplo n.º 15
0
    def prox_passo(self):
        """ Obtém o próximo passo do agente na direção em que se encontra """
        dir_x = self.direcao[0] * self.tam_passo
        dir_y = self.direcao[1] * self.tam_passo

        passo = vector(dir_x, dir_y)
        return passo
Ejemplo n.º 16
0
def run_irl(world, car, reward, theta, data):
    def gen():
        for point in data:
            for c, x0, u in zip(world.cars, point['x0'], point['u']):
                c.traj.x0.set_value(x0)
                for cu, uu in zip(c.traj.u, u):
                    cu.set_value(uu)
            yield

    r = car.traj.reward(reward)
    g = utils.grad(r, car.traj.u)
    H = utils.hessian(r, car.traj.u)
    I = tt.eye(utils.shape(H)[0])
    reg = utils.vector(1)
    reg.set_value([1e-1])
    H = H - reg[0] * I
    L = tt.dot(g, tt.dot(tn.MatrixInverse()(H), g)) + tt.log(tn.Det()(-H))
    for _ in gen():
        pass
    optimizer = utils.Maximizer(L, [theta],
                                gen=gen,
                                method='gd',
                                eps=0.1,
                                debug=True,
                                iters=1000,
                                inf_ignore=10)
    optimizer.maximize()
    print theta.get_value()
Ejemplo n.º 17
0
    def item_that_contains(self, point):
        for point_item in self.point_items:
            if not point_item.is_bounded():
                continue

            skip = False
            for other in point_item.others:
                edge_normal = utils.orthogonal(other.line.direction)
                A, B = other.vertices()
                AO = utils.vector(A, point_item.point)
                AP = utils.vector(A, point)
                if utils.dot(AO, edge_normal) * utils.dot(AP, edge_normal) < 0:
                    skip = True
                    break
            if not skip:
                return point_item
        raise Exception("PointSet.item_that_contains: not found")
Ejemplo n.º 18
0
    def __init__(self, *args, **vargs):
        SimpleOptimizerCar.__init__(self, *args, **vargs)

        self.social_u = utils.vector(2)
        self.l = utils.scalar()
        self.watching = []
        self.copyx = None
        self.copyu = None
        self.l_default = 3
Ejemplo n.º 19
0
    def mudar_direcao_aleatoriamente(self):
        """ Escolhe alguma direção aleatoriamente que não seja a atual """
        # REQ implementar o método
        """ k1 = [
            vector(1, 0),  # este vector significa direita
            vector(-1, 0),  # esquerda
            vector(0, 1),  # cima
            vector(0, -1),  # baixo
        ]

        

        teste=np.random.choice(k1)
        print(teste)
        """
        passo = [vector(1, 0), vector(-1, 0), vector(0, 1), vector(0, -1)]
        random = choice(passo)
        return random
Ejemplo n.º 20
0
def move(LatLon):
    global old_pos, init, old_bearing, mesh, bearings, tractor
    utm_pos = Coordinate(x=LatLon.x, y=LatLon.y)
    if init is False:
        tractor.m_p_s = 2
        tractor.run()
        init = True
        old_pos = utm_pos
        scene.camera.pos = vec(utm_pos.x, 4, utm_pos.y - 50)
        scene.camera.axis = vec(0, -4, -50)
        obj = []
        for x in range(-50, 50):
            for y in range(-50, 50):
                a = Coordinate(x=utm_pos.x + x * 500,
                               y=utm_pos.y + y * 500 + 500)
                b = Coordinate(x=utm_pos.x + x * 500 + 500,
                               y=utm_pos.y + y * 500 + 500)
                c = Coordinate(x=utm_pos.x + x * 500 + 500,
                               y=utm_pos.y + y * 500)
                d = Coordinate(x=utm_pos.x + x * 500, y=utm_pos.y + y * 500)
                Q = quad(
                    canvas=None,
                    v0=vertex(pos=vec(a.x, -1, a.y)),
                    v1=vertex(pos=vec(b.x, -1, b.y)),
                    v2=vertex(pos=vec(c.x, -1, c.y)),
                    v3=vertex(pos=vec(d.x, -1, d.y)),
                )
                obj.append(Q)
        compound(obj, canvas=scene, color=vec(0, .60, 0))

    else:
        curso = utils.bearing(utm_pos, old_pos)
        a = utils.offset(utm_pos, curso - 90, distance / 2)
        b = utils.offset(utm_pos, curso + 90, distance / 2)
        c = utils.offset(old_pos, old_bearing + 90, distance / 2)
        d = utils.offset(old_pos, old_bearing - 90, distance / 2)
        Q = quad(
            v0=vertex(pos=vec(a.x, .5, a.y), color=color.yellow),
            v1=vertex(pos=vec(b.x, .5, b.y), color=color.yellow),
            v2=vertex(pos=vec(c.x, .5, c.y), color=color.yellow),
            v3=vertex(pos=vec(d.x, .5, d.y), color=color.yellow),
        )
        qobj.append(Q)
        left.append(vec(a.x, .5, a.y))
        right.append(vec(b.x, .5, b.y))
        old_bearing = curso
        old_pos = utm_pos
        bearings.pop()
        bearings.insert(0, curso)
        curso = sum(bearings) / len(bearings)
        camera = utils.offset(utm_pos, curso, 300)
        x, z = utils.vector(curso + 180)
        #scene.camera.pos=vec(camera.x, 100, camera.y)
        #scene.camera.axis=200*vec(x, -0.3 , z)
        tractor_3d.pos = tractor.get_vec(1.5)
Ejemplo n.º 21
0
def hard_coded_policy(ob, head, a, board_shape, A_space, eps=0.5):
    """
        head = np.array [y, x]
    """
    def valid(pos):
        if pos.y >= board_shape[0] or pos.y < 0:
            return False
        if pos.x >= board_shape[1] or pos.x < 0:
            return False
        if ob[pos.y, pos.x] != 0:
            return False
        return True

    head = vector(head[1], head[0])
    forward = head + A_space.a_to_4dir(a)
    sample = np.random.random()

    if valid(forward) and sample > eps:
        selected = forward
    else:
        possible = []
        right = head + A_space.a_to_4dir(0)
        down = head + A_space.a_to_4dir(1)
        left = head + A_space.a_to_4dir(2)
        up = head + A_space.a_to_4dir(3)

        if valid(up): possible.append(up)
        if valid(down): possible.append(down)
        if valid(left): possible.append(left)
        if valid(right): possible.append(right)
        possible = np.array(possible)

        try:
            selected = possible[
                np.random.randint(0, high=possible.shape[0]), :]
        except ValueError:
            selected = forward

    return A_space.dir4_to_a(vector(selected[0], selected[1]) - head)
Ejemplo n.º 22
0
    def _k_intersect(self, other):
        u2 = utils.dot(self.direction, self.direction)
        v2 = utils.dot(other.direction, other.direction)
        uv = utils.dot(self.direction, other.direction)

        AC = utils.vector(self.point, other.point)
        AC_u = utils.dot(AC, self.direction)
        AC_v = utils.dot(AC, other.direction)

        lower = u2 * v2 - uv * uv
        if lower == 0:
            return None
        return (AC_u * v2 - AC_v * uv) / lower
Ejemplo n.º 23
0
def run_irl(world, car, reward, theta, data):
    def gen():
        for point in data:
            for c, x0, u in zip(world.cars, point['x0'], point['u']):
                c.traj.x0.set_value(x0)
                for cu, uu in zip(c.traj.u, u):
                    cu.set_value(uu)
            yield
    r = car.traj.reward(reward)
    g = utils.grad(r, car.traj.u)
    H = utils.hessian(r, car.traj.u)
    I = tt.eye(utils.shape(H)[0])
    reg = utils.vector(1)
    reg.set_value([1e-1])
    H = H-reg[0]*I
    L = tt.dot(g, tt.dot(tn.MatrixInverse()(H), g))+tt.log(tn.Det()(-H))
    for _ in gen():
        pass
    optimizer = utils.Maximizer(L, [theta], gen=gen, method='gd', eps=0.1, debug=True, iters=1000, inf_ignore=10)
    optimizer.maximize()
    print theta.get_value()
Ejemplo n.º 24
0
class Properties:
    width = 600
    height = 600
    time = 0
    last_clear_time = 0
    running = True
    bullets = []
    enemies = []
    timeline = []
    me = vector(300, 500)
    meObj = pygame.Surface((10, 10))
    meObj.fill((
        255,
        255,
        255,
    ))
    pygame.draw.rect(meObj, (
        0,
        255,
        0,
    ), (0, 0, 10, 10), 10)
Ejemplo n.º 25
0
    def init_board(self):

        ob = np.zeros(self.board_shape, dtype=np.int16)
        head_board = np.zeros(self.board_shape, dtype=np.int16)
        snakes = []

        mid_height = int(self.board_shape[0] / 2)
        for i in range(self.num_players):
            # init each snake with length init_len
            x = int((i + 1) * self.board_shape[1] / (self.num_players + 1))
            init_vecs = [
                vector(x, y)
                for y in range(mid_height - self.init_len + 1, mid_height + 1)
            ]
            snakes.append(deque(init_vecs))

            for vec in init_vecs:
                ob[vec.y, vec.x] = i + 1

            head_board[init_vecs[-1].y, init_vecs[-1].x] = i + 1

        return ob, head_board, snakes
Ejemplo n.º 26
0
def get_moves_old(game_map, turns, pid, training=False, graph=False):
    w = game_map.width
    h = game_map.height
    me = game_map.get_me()
    out = np.zeros((w, h))
    graph_o, all_axes, F, Z = get_gx(game_map, training)
    gradU, gradV = np.gradient(Z, axis=(0, 1))  # gradient of func
    for idx, ship in enumerate(me.all_ships()):
        sx, sy = int(ship.x), int(ship.y)
        sv = vector(ship)  # vector
        # Distance/Magnitude/Norm/Length = np.sqrt(x**2+y**2) = np.sqrt([x,y].dot([x,y])
        dx, dy = gradU[sx][sy], gradV[sx][sy]  # unit vector of grad @ sx,sy
        gm = F.norm(dx, dy)
        u, v = -gm * dx, -gm * dy
        angle = degrees(np.arctan2(v, u)) % 360
        out[sx][sy] = angle
        is_last_ship = idx == len(me.all_ships()) - 1
        is_my_pid = pid == 0
        if is_last_ship and is_my_pid and graph:
            plotter(Z, sv, graph_o, turns, pid, w, h)
    graph_o.clear()
    return out
Ejemplo n.º 27
0
def get_moves(game_map, turns, pid, training=False, graph=False):
    w = game_map.width
    h = game_map.height
    me = game_map.get_me()
    ships = me.all_ships()
    out = {}
    if graph:
        grad_u, grad_v, graph_objs, Func, gridZ = get_gradient(
            ships, game_map, graph)
    else:
        grad_u, grad_v = get_gradient(ships, game_map, graph)
    for idx, ship in enumerate(ships):
        sx, sy = int(ship.x), int(ship.y)
        # Distance/Magnitude/Norm/Length = np.sqrt(x**2+y**2) = np.sqrt([x,y].dot([x,y])
        sv = vector(ship)
        u, v = grad_u[idx], grad_v[idx]
        angle = degrees(np.arctan2(v, u)) % 360
        out[sx, sy] = angle
        is_last_ship = idx == len(ships) - 1
        is_my_pid = pid == 0
        if graph and is_last_ship and is_my_pid:
            plotter(gridZ, sv, graph_objs, turns, pid, w, h)
    graph_objs.clear()
    return out
Ejemplo n.º 28
0
 def __init__(self, T, dyn, x0=None):
     self.x = [vector(4) if x0 is None else x0]
     self.u = [vector(2) for _ in range(T)]
     self.dyn = dyn
     for t in range(T):
         self.x.append(dyn(self.x[t], self.u[t]))
Ejemplo n.º 29
0
    else:
        the_car = None
        for c in the_world.cars:
            if isinstance(c, car.UserControlledCar):
                the_car = c
    T = the_car.traj.T
    train = []
    for fname in files:
        with open(fname) as f:
            us, xs = pickle.load(f)
            for t in range(T, len(xs[0])-T, T):
                point = {
                    'x0': [xseq[t-1] for xseq in xs],
                    'u': [useq[t:t+T] for useq in us]
                }
                train.append(point)
    theta = utils.vector(5)
    theta.set_value(np.array([1., -50., 10., 10., -60.]))
    r = 0.1*feature.control()
    for lane in the_world.lanes:
        r = r + theta[0]*lane.gaussian()
    for fence in the_world.fences:
        r = r + theta[1]*lane.gaussian()
    for road in the_world.roads:
        r = r + theta[2]*road.gaussian(10.)
    r = r + theta[3]*feature.speed(1.)
    for car in the_world.cars:
        if car!=the_car:
            r = r + theta[4]*car.traj.gaussian()
    run_irl(the_world, the_car, r, theta, train)
Ejemplo n.º 30
0
        the_car = None
        for c in the_world.cars:
            if isinstance(c, car.UserControlledCar):
                the_car = c
    T = the_car.traj.T
    train = []
    for fname in files:
        with open(fname) as f:
            us, xs = pickle.load(f)
            for t in range(T, len(xs[0]) - T, T):
                point = {
                    'x0': [xseq[t - 1] for xseq in xs],
                    'u': [useq[t:t + T] for useq in us]
                }
                train.append(point)
    theta = utils.vector(5)
    theta.set_value(np.array([1., -50., 10., 10., -60.]))
    r = 0.1 * feature.control()
    #features, thetas are weights
    for lane in the_world.lanes:
        r = r + theta[0] * lane.gaussian()
    for fence in the_world.fences:
        r = r + theta[1] * lane.gaussian()
    for road in the_world.roads:
        r = r + theta[2] * road.gaussian(10.)
    r = r + theta[3] * feature.speed(1.)
    for car in the_world.cars:
        if car != the_car:
            r = r + theta[4] * car.traj.gaussian()
    run_irl(the_world, the_car, r, theta, train)
Ejemplo n.º 31
0
    def __init__(
        self,
        dom: domain.Domain,
        num_queries: int,
        query_length: int,
        num_expectation_samples: int,
        include_previous_query: bool,
        generate_scenario: bool,
        objective_fn: ObjectiveFunctionType,
        beta_pref: float,
    ) -> None:
        assert num_queries >= 1, \
            "QueryGenerator.__init__: num_queries must be at least 1"
        assert query_length >= 1, \
            "QueryGenerator.__init__: query_length must be at least 1"
        assert num_expectation_samples >= 1, \
            "QueryGenerator.__init__: num_expectation_samples must be \
                at least 1"

        self.domain = dom
        self.num_queries = num_queries
        self.query_length = query_length
        self.num_expectation_samples = num_expectation_samples
        self.include_previous_query = include_previous_query
        self.generate_scenario = generate_scenario
        self.objective_fn = objective_fn
        self.beta_pref = beta_pref

        # Variable to store the built computation graph. Set in self.optimizer.
        self._optimizer = None
        # List of variables to optimize.
        self._variables: typing.List[tt.TensorVariable] = []
        # List of bounds for variables.
        self._bounds: typing.Dict[tt.TensorVariable, domain.BoundsType] = {}

        self.num_generated_queries = self.num_queries
        if self.include_previous_query:
            self.num_generated_queries = self.num_queries - 1

        # xs[<query>][<time>][<agent>]
        self.xs: typing.List[typing.List[typing.List[tt.TensorVariable]]] = []
        # us[<query>][<time>][<agent>]
        self.us: typing.List[typing.List[typing.List[tt.TensorVariable]]] = []
        if self.include_previous_query:
            # previous_x0s[<agent>]
            self.previous_x0s: typing.List[tt.TensorVariable] = \
                [utils.vector(self.domain.state_size,
                              name="previous_x0s[%d]" % (i))
                 for i in range(self.domain.num_agents)]

            # previous_us[<time>][<agent>]
            self.previous_us: typing.List[typing.List[tt.TensorVariable]] = \
                [[utils.vector(self.domain.control_size,
                               name="previous_us[%d][%d]" % (t, i))
                  for i in range(self.domain.num_agents)]
                 for t in range(self.query_length)]

            # previous_xs[<time>][<agent>]
            self.previous_xs: typing.List[tt.TensorVariable] = \
                [self.previous_x0s]

            for t in range(1, self.query_length):
                xs = self.previous_xs[t - 1]
                us = self.previous_us[t - 1]
                f = self.domain.dynamics_function
                self.previous_xs.append(
                    [f(xs[i], us[i]) for i in range(self.domain.num_agents)])

            self.us.append(self.previous_us)
            self.xs.append(self.previous_xs)

        # x0s[<agent>]
        self.x0s = [
            utils.vector(self.domain.state_size, name="x0s[%d]" % (i))
            for i in range(self.domain.num_agents)
        ]
        # other_us[<time>][<agent>]
        self.other_us = [[
            utils.vector(self.domain.control_size,
                         name="other_us[t=%d][agent=%d]" % (t, i))
            for i in range(self.domain.num_others)
        ] for t in range(self.query_length)]
        # query_us[<query>][<time>]
        self.query_us = [[
            utils.vector(self.domain.control_size,
                         name="query_us[query=%d][t=%d]" % (i, t))
            for t in range(self.query_length)
        ] for i in range(self.num_generated_queries)]

        if self.generate_scenario:
            for i in range(self.domain.num_agents):
                v = self.x0s[i]
                self._variables.append(v)
                self._bounds[v] = self.domain.state_bounds

        for t in range(self.query_length):
            for i in range(self.domain.num_others):
                v = self.other_us[t][i]
                self._variables.append(v)
                self._bounds[v] = self.domain.control_bounds

        for i in range(self.num_generated_queries):
            for t in range(self.query_length):
                v = self.query_us[i][t]
                self._variables.append(v)
                self._bounds[v] = self.domain.control_bounds

        for i in range(self.num_generated_queries):
            # merged_us[time][agent]
            merged_us = []
            for t in range(self.query_length):
                us_t = [self.query_us[i][t]]
                for j in range(self.domain.num_others):
                    us_t.append(self.other_us[t][j])
                merged_us.append(us_t)

            self.us.append(merged_us)

            query_xs = [self.x0s]
            for t in range(1, self.query_length):
                xs = query_xs[t - 1]
                us = merged_us[t - 1]
                f = self.domain.dynamics_function
                query_xs.append(
                    [f(xs[i], us[i]) for i in range(self.domain.num_agents)])

            self.xs.append(query_xs)

        # The features summed over the trajectory.
        self.traj_features_list = [
            sum_trajectory_features(
                self.domain, self.query_length,
                [self.xs[i][t][0] for t in range(self.query_length)],
                [self.xs[i][t][1:] for t in range(self.query_length)])
            for i in range(self.num_queries)
        ]
        # traj_features is dimension num_queries by num_features
        self.traj_features = tt.stack(self.traj_features_list)

        # The samples of the weight vector, used to approximate
        # the expectation in our objective.
        self.w_samples = utils.matrix(self.num_expectation_samples,
                                      self.domain.feature_size,
                                      name="w_samples")

        self._objective = self.objective_fn(self.num_queries,
                                            self.num_expectation_samples,
                                            self.w_samples, self.traj_features,
                                            self.beta_pref)

        print("Compiling Optimizer")
        self.optimizer()
        print("Finished Compiling Optimizer")
Ejemplo n.º 32
0
"""Flappy, game inspired by Flappy Bird.

Exercises

1. Keep score.
2. Vary the speed.
3. Vary the size of the balls.
4. Allow the bird to move forward and back.

"""

from random import *
from turtle import *
from utils import vector

bird = vector(0, 0)
balls = []


def tap(x, y):
    "Move bird up in response to screen tap."
    up = vector(0, 30)
    bird.move(up)


def inside(point):
    "Return True if point on screen."
    return -200 < point.x < 200 and -200 < point.y < 200


def draw(alive):
Ejemplo n.º 33
0
def tap(x, y):
    "Move bird up in response to screen tap."
    up = vector(0, 30)
    bird.move(up)
 opts = dict(optlist)
 #db = shelve.open(args[1] if args[1].endswith('.db') else args[1]+'.db', writeback=True)
 N = int(opts.get('-n', 200))
 S = int(opts.get('-s', 2000))
 P = float(opts.get('-p', 1.))
 method = int(opts.get('-m', 0))
 if method == 4:
     world.avg_case = True
 phis = []
 '''db['W'] = W
 db['N'] = N
 db['S'] = S
 db['P'] = P
 db['method'] = method'''
 if method == 2:
     f = vector(len(W))
     phi = f / tt.maximum(1., f.norm(2))
     A = matrix(0, len(W))
     y = tt.dot(A, phi)
     p = tt.sum(tt.switch(y < 0, 1., 0.))
     q = tt.sum(tt.switch(y > 0, 1., 0.))
     #obj = tt.minimum(tt.sum(1.-tt.exp(-tn.relu(y))), tt.sum(1.-tt.exp(-tn.relu(-y))))
     obj = p * tt.sum(1. - tt.exp(-tn.relu(y))) + q * tt.sum(
         1. - tt.exp(-tn.relu(-y)))
     optimizer = Maximizer(obj, [f])
 if method == 5:
     cand_phis = []
     for i in range(50):
         x = np.random.normal(size=len(W))
         cand_phis.append(x / np.linalg.norm(x))
 if method == 6: