Ejemplo n.º 1
0
def pcd2img(name, load_path, save_path, k, factor_path=None):
    """Convert point clouds to depth images.
    """
    mask = IO.get(os.path.join(load_path, "%s/instance_segment.png" % name))

    mask_bg = np.array(mask[:, :, 2] == 0, dtype=np.float32)
    depth_in = IO.get(os.path.join(load_path, "%s/depth.exr" % name))
    depth_out = depth_in * mask_bg

    mask_vals = np.unique(mask[:, :, 2])[1:]
    for i in range(len(mask_vals)):
        pcd_i = IO.get(
            os.path.join(load_path, "%s/depth2pcd_pred_%d.pcd" % (name, i)))
        if factor_path is not None:
            with open(
                    os.path.join(factor_path,
                                 "%s/scale_factor_%d.json" % (name, i))) as f:
                factors = json.loads(f.read())
                if factors['normalize']:
                    pcd_i *= float(factors['normalize_factor'])
                if factors['centering']:
                    pcd_i += np.array(factors['center_position'])
        depth_i = project_to_image(k, pcd_i)
        mask_i = np.array(mask[:, :, 2] == mask_vals[i], dtype=np.float32)
        depth_out += depth_i * mask_i

    # write predicted depth image in exr
    depth_out = np.expand_dims(depth_out, -1).repeat(3, axis=2)
    pyexr.write(os.path.join(save_path, "%s/depth_pred.exr" % name), depth_out)
Ejemplo n.º 2
0
def rms(path, gt_name, pred_name):
    """ Compute the average root-mean-squared error of predicted depth images.
    """
    errors = []
    for subdir, dirs, files in os.walk(path):
        for dirname in sorted(dirs):
            depth_gt = IO.get(os.path.join(path, '%s/%s' % (dirname, gt_name)))
            depth_pred = IO.get(os.path.join(path, '%s/%s' % (dirname, pred_name)))
            diff = np.where(depth_pred > 0, depth_pred - depth_gt, 0)
            errors.append(np.sqrt(np.mean(diff**2)))
    return np.array(errors).mean(), np.array(errors).sum()
Ejemplo n.º 3
0
def img2pcd(name, load_path, save_path, inv_k, normalize=False, plot=False):
    """Convert a pair of ClearGrasp images with opaque and transparent objects into point clouds.
    """
    mask = IO.get(os.path.join(load_path, "%s-mask.png" % name))

    # Separate multiple objects into multiple point clouds
    mask_copy = np.array(mask * 255, dtype=np.uint8)
    if plot:
        cv2.imshow("%s mask" % name, mask_copy)
        cv2.waitKey(0)
    contours, hierarchy = cv2.findContours(mask_copy, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    obj_idx = 0
    for i in range(len(contours)):
        if cv2.contourArea(contours[i]) > 100:
            mask_i = np.zeros_like(mask)
            cv2.drawContours(mask_i, contours, contourIdx=i, color=255, thickness=-1)
            if plot:
                cv2.imshow("%s idx:%d" % (name, i), mask_i)
                cv2.waitKey(0)

            mask_pcd = deproject(mask_i / 255, inv_k).sum(axis=1) > 0

            opaque_depth = IO.get(os.path.join(load_path, "%s-opaque-depth-img.exr" % name))
            opaque_pcd = deproject(opaque_depth, inv_k)[mask_pcd]
            IO.put(os.path.join(save_path, "opaque/%s-%d.pcd" % (name, obj_idx)), opaque_pcd)

            transp_depth = IO.get(os.path.join(load_path, "%s-transparent-depth-img.exr" % name))
            transp_pcd = deproject(transp_depth, inv_k)[mask_pcd]
            IO.put(os.path.join(save_path, "transparent/%s-%d.pcd" % (name, obj_idx)), transp_pcd)

            if normalize:  # normalize pcd to be within [-1, 1] for gridding
                max_val = np.nanmax((np.max(np.abs(opaque_pcd)), np.max(np.abs(transp_pcd))))
                if max_val > 1:
                    print(max_val)
                opaque_pcd /= max_val * 1.01
                transp_pcd /= max_val * 1.01
                with open(os.path.join(save_path, "norm_factors/%s-%d.json" % (name, obj_idx)), 'w') as outfile:
                    json.dump(max_val * 1.01, outfile)

            obj_idx += 1

            # print(mask_pcd.sum())
            # print(opaque_pcd.shape)
            # print(transp_pcd.shape)

        else:
            if plot:
                mask_i = np.zeros_like(mask)
                cv2.drawContours(mask_i, contours, contourIdx=i, color=255, thickness=5)
                cv2.imshow("%s idx:%d" % (name, i), mask_i)
                cv2.waitKey(0)
Ejemplo n.º 4
0
def img2pcd(name,
            load_path,
            save_path,
            inv_k,
            centering=False,
            normalize=False,
            skip=False,
            plot=False):
    """Convert a pair of ClearGrasp images with opaque and transparent objects into point clouds.
    """
    mask = IO.get(os.path.join(load_path, "%s/instance_segment.png" % name))

    # Separate multiple objects into multiple point clouds
    mask_vals = np.unique(mask[:, :, 2])[
        1:]  # each object is indicated by a distinct value in RED channel
    maxdis = []
    skip_count = 0
    for i in range(len(mask_vals)):
        mask_i = np.array(mask[:, :, 2] == mask_vals[i], dtype=np.float32)
        if plot:
            cv2.imshow("%s idx:%d" % (name, i), mask_i)
            cv2.waitKey(0)

        mask_pcd = deproject(mask_i, inv_k).sum(axis=1) > 0

        # opaque_depth = IO.get(os.path.join(load_path, "%s/detph_GroundTruth.exr" % name))
        # opaque_pcd = deproject(opaque_depth, inv_k)[mask_pcd]
        opaque_pcd = IO.get(
            os.path.join(load_path, "%s/Ground_Truth_%d.pcd" % (name, i)))

        transp_depth = IO.get(os.path.join(load_path, "%s/depth.exr" % name))
        transp_pcd = deproject(transp_depth, inv_k)[mask_pcd]
        center = transp_pcd.mean(axis=0)

        if centering:
            opaque_pcd -= center
            transp_pcd -= center
        maxdis.append(
            np.max((np.max(np.abs(opaque_pcd)), np.max(np.abs(transp_pcd)))))
        if normalize and not skip:
            opaque_pcd /= maxdis[-1] * 1.01
            transp_pcd /= maxdis[-1] * 1.01
        if maxdis[-1] >= 1 and skip:
            skip_count += 1
            continue
        if not os.path.exists(os.path.join(save_path, name)):
            os.mkdir(os.path.join(save_path, name))
        if maxdis[-1] == 0:
            print((name, i))
        # save centering and scaling factors
        factors = {
            'centering': centering,
            'center_position': center.tolist(),
            'normalize': normalize,
            'normalize_factor': maxdis[-1] * 1.01,
        }
        with open(
                os.path.join(save_path, "%s/scale_factor_%d.json" % (name, i)),
                'w') as outfile:
            json.dump(factors, outfile)

        # IO.put(os.path.join(save_path, "%s/depth2pcd_GT_%d.pcd" % (name, i)), opaque_pcd)
        IO.put(
            os.path.join(save_path,
                         "%s/Ground_Truth_recenter_%d.pcd" % (name, i)),
            opaque_pcd)
        IO.put(os.path.join(save_path, "%s/depth2pcd_%d.pcd" % (name, i)),
               transp_pcd)
        # print(mask_pcd.sum())
        # print(opaque_pcd.shape)
        # print(transp_pcd.shape)
    return np.max(maxdis), skip_count
Ejemplo n.º 5
0
    opaque = o3d.io.read_point_cloud("./%s/%s/depth2pcd_GT_%d.pcd" %
                                     (dset, name, obj_idx))
    print(np.array(opaque.points).shape)
    o3d.visualization.draw_geometries([opaque])

    opaque = o3d.io.read_point_cloud("./%s/%s/Ground_Truth_recenter_%d.pcd" %
                                     (dset, name, obj_idx))
    print(np.array(opaque.points).shape)
    o3d.visualization.draw_geometries([opaque])

    pred_i = o3d.io.read_point_cloud("./%s/%s/depth2pcd_pred_%d.pcd" %
                                     (dset, name, obj_idx))
    print(np.array(pred_i.points).shape)
    o3d.visualization.draw_geometries([pred_i])

    depth_raw = IO.get("./%s/%s/depth.exr" % (dset, name))
    plt.imshow(depth_raw)
    plt.show()
    pt_raw = deproject(depth_raw, INV_K)
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(pt_raw)
    print(np.array(pcd.points).shape)
    o3d.visualization.draw_geometries([pcd])

    depth_gt = IO.get("./%s/%s/detph_GroundTruth.exr" % (dset, name))
    plt.imshow(depth_gt)
    plt.show()
    pt_gt = deproject(depth_gt, INV_K)
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(pt_gt)
    print(np.array(pcd.points).shape)