Ejemplo n.º 1
0
 def __init__(self, root, config, crop_size, scale_size, baseline=False):
     super(MultiTaskClsDataSet, self).__init__()
     self.root = root
     self.config = config
     self.crop_size = crop_size
     self.scale_size = scale_size
     self.baseline = baseline
     df = pd.DataFrame.from_csv(config)
     self.images_list = []
     for index, row in df.iterrows():
         self.images_list.append(row)
     with open('info.json', 'r') as fp:
         info = json.load(fp)
     mean_values = torch.from_numpy(np.array(info['mean'], dtype=np.float32) / 255)
     std_values = torch.from_numpy(np.array(info['std'], dtype=np.float32) / 255)
     eigen_values = torch.from_numpy(np.array(info['eigval'], dtype=np.float32))
     eigen_vectors = torch.from_numpy(np.array(info['eigvec'], dtype=np.float32))
     if baseline:
         self.transform = transforms.Compose([
             transforms.RandomCrop(crop_size),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=mean_values, std=std_values),
         ])
     else:
         self.transform = transforms.Compose([
             transforms.RandomCrop(crop_size),
             transforms.RandomHorizontalFlip(),
             PILColorJitter(),
             transforms.ToTensor(),
             Lighting(alphastd=0.01, eigval=eigen_values, eigvec=eigen_values),
             transforms.Normalize(mean=mean_values, std=std_values),
         ])
Ejemplo n.º 2
0
	def __init__(self, crop_size, scale_size, baseline):
		super(kaggleClsTrain1, self).__init__()
		self.image = ['data/kaggle1/train_images/train/' + line.strip() + '_' + str(scale_size) + '.png' for line in open('data/kaggle1/train_images/train/train_images.txt', 'r')]
		self.label = torch.from_numpy(np.array(np.loadtxt('data/kaggle1/train_images/train/train_labels.txt'), np.int))
		with open('data/kaggle/info.json', 'r') as fp:
			info = json.load(fp)
		mean_values = torch.from_numpy(np.array(info['mean'], dtype=np.float32) / 255)
		std_values = torch.from_numpy(np.array(info['std'], dtype=np.float32) / 255)
		eigen_values = torch.from_numpy(np.array(info['eigval'], dtype=np.float32))
		eigen_vectors = torch.from_numpy(np.array(info['eigvec'], dtype=np.float32))
		if baseline:
			self.transform = transforms.Compose([
				transforms.RandomCrop(crop_size),
				transforms.RandomHorizontalFlip(),
				transforms.ToTensor(),
				transforms.Normalize(mean=mean_values, std=std_values),
			])
		else:
			self.transform = transforms.Compose([
				transforms.RandomSizedCrop(crop_size),
				transforms.RandomHorizontalFlip(),
				PILColorJitter(),
				transforms.ToTensor(),
				#ColorJitter(),
				Lighting(alphastd=0.1, eigval=eigen_values, eigvec=eigen_vectors),
				#Affine(rotation_range=180, translation_range=None, shear_range=None, zoom_range=None),
				transforms.Normalize(mean=mean_values, std=std_values),
			])
Ejemplo n.º 3
0
def main():
    global args, best_err1, best_err5, start_epoch

    args = parser.parse_args()

    test_id = args.net_type + '_' + str(args.depth) + '_' + args.dataset

    csv_path = 'logs/'
    csv_path = csv_path + test_id + '/'
    checkpoint_path = 'runs/'

    if not os.path.exists(csv_path):
        os.makedirs(csv_path)
    if not os.path.exists(checkpoint_path):
        os.makedirs(checkpoint_path)

    if args.dataset.startswith('cifar'):
        # Preprocessing
        normalize = transforms.Normalize(
            mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
            std=[x / 255.0 for x in [63.0, 62.1, 66.7]])

        transform_train = transforms.Compose([
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ])

        transform_test = transforms.Compose([transforms.ToTensor(), normalize])

        # Dataloader
        if args.dataset == 'cifar100':
            train_loader = torch.utils.data.DataLoader(
                datasets.CIFAR100('./data',
                                  train=True,
                                  download=True,
                                  transform=transform_train),
                batch_size=args.batch_size,
                shuffle=True,
                num_workers=args.workers,
                pin_memory=True)
            val_loader = torch.utils.data.DataLoader(
                datasets.CIFAR100('./data',
                                  train=False,
                                  transform=transform_test),
                batch_size=args.batch_size,
                shuffle=True,
                num_workers=args.workers,
                pin_memory=True)
            numberofclass = 100

        elif args.dataset == 'cifar10':
            train_loader = torch.utils.data.DataLoader(
                datasets.CIFAR10('./data',
                                 train=True,
                                 download=True,
                                 transform=transform_train),
                batch_size=args.batch_size,
                shuffle=True,
                num_workers=args.workers,
                pin_memory=True)
            val_loader = torch.utils.data.DataLoader(
                datasets.CIFAR10('./data',
                                 train=False,
                                 transform=transform_test),
                batch_size=args.batch_size,
                shuffle=True,
                num_workers=args.workers,
                pin_memory=True)
            numberofclass = 10
        else:
            raise Exception('unknown dataset: {}'.format(args.dataset))

    elif args.dataset == 'tiny':
        # Image path
        traindir = os.path.join('../../imagenet/train')
        valdir = os.path.join('../../imagenet/val')

        # Preprocessing
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])

        jittering = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4)
        lighting = Lighting(alphastd=0.1,
                            eigval=[0.2175, 0.0188, 0.0045],
                            eigvec=[[-0.5675, 0.7192, 0.4009],
                                    [-0.5808, -0.0045, -0.8140],
                                    [-0.5836, -0.6948, 0.4203]])

        # Dataloader
        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(64),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                jittering,
                lighting,
                normalize,
            ]))

        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=args.batch_size,
                                                   shuffle=True,
                                                   num_workers=args.workers,
                                                   pin_memory=True)

        val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(64),
                transforms.CenterCrop(64),
                transforms.ToTensor(),
                normalize,
            ])),
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True)

        numberofclass = 200

    else:
        raise Exception('unknown dataset: {}'.format(args.dataset))

    print("=> creating model '{}'".format(args.net_type))
    if args.net_type == 'resnet':
        model = RN.ResNet(args.dataset, args.depth, numberofclass,
                          args.bottleneck)  # for ResNet
    elif args.net_type == 'wide_resnet':
        model = WN.WideResNet(args.dataset,
                              depth=28,
                              num_classes=numberofclass,
                              widen_factor=10,
                              dropRate=0.3)
    else:
        raise Exception('unknown network architecture: {}'.format(
            args.net_type))

    #model = torch.nn.DataParallel(model).cuda()
    model = model.cuda()

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay,
                                nesterov=True)

    if args.resume:
        checkpoint_path = checkpoint_path + csv_path
        checkpoint = torch.load(checkpoint_path + 'model_best.pth.tar')
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        start_epoch = checkpoint['epoch'] + 1
        filename = csv_path + 'log.csv'
        csv_logger = CSVLogger(csv_path,
                               args=args,
                               fieldnames=[
                                   'epoch', 'train_loss', 'train_err1',
                                   'test_loss', 'test_err1', 'test_err5'
                               ],
                               filename=filename)
    else:
        start_epoch = 0
        filename = csv_path + '/' + test_id + '.csv'
        csv_logger = CSVLogger(csv_path,
                               args=args,
                               fieldnames=[
                                   'epoch', 'train_loss', 'train_err1',
                                   'test_loss', 'test_err1', 'test_err5'
                               ],
                               filename=filename)

    print(model)
    print('the number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

    for epoch in range(start_epoch, start_epoch + args.epochs):

        adjust_learning_rate(args, optimizer, epoch)

        # train for one epoch
        train_loss, train_err1 = train(train_loader, model, criterion,
                                       optimizer, epoch)

        # evaluate on validation set
        err1, err5, val_loss = validate(val_loader, model, criterion, epoch)

        # loss
        train_loss = '%.4f' % (train_loss)
        train_err1 = '%.4f' % (train_err1)

        val_loss = '%.4f' % (val_loss)
        test_err1 = '%.4f' % (err1)
        test_err5 = '%.4f' % (err5)

        # remember best prec@1 and save checkpoint
        is_best = err1 <= best_err1
        best_err1 = min(err1, best_err1)
        if is_best:
            best_err5 = err5

        print('Current best error (top-1 and 5 error):', best_err1, best_err5)
        save_checkpoint(
            {
                'epoch': epoch,
                'arch': args.net_type,
                'state_dict': model.state_dict(),
                'best_err1': best_err1,
                'best_err5': best_err5,
                'optimizer': optimizer.state_dict(),
            }, is_best, test_id)

        row = {
            'epoch': str(epoch),
            'train_loss': str(train_loss),
            'train_err1': str(train_err1),
            'test_loss': str(val_loss),
            'test_err1': str(test_err1),
            'test_err5': str(test_err5)
        }
        csv_logger.writerow(row)

    print('Best accuracy (top-1 and 5 error):', best_err1, best_err5)
    csv_logger.close()
Ejemplo n.º 4
0
def get_loaders(root,
                batch_size,
                resolution,
                num_workers=32,
                val_batch_size=200,
                prefetch=False,
                color_jitter=0.4,
                pca=False,
                crop_pct=0.875):
    normalize = transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN,
                                     std=IMAGENET_DEFAULT_STD)
    scale_size = int(math.floor(resolution / crop_pct))

    transform_train = []
    transform_eval = []

    transform_train += [
        transforms.RandomResizedCrop(resolution,
                                     interpolation=InterpolationMode.BICUBIC),
        transforms.RandomHorizontalFlip(),
        transforms.ColorJitter(*(color_jitter, color_jitter, color_jitter)),
    ]

    transform_eval += [
        transforms.Resize(scale_size, interpolation=InterpolationMode.BICUBIC),
        transforms.CenterCrop(resolution),
    ]

    if not prefetch:
        transform_train += [transforms.ToTensor()]
        if pca:
            transform_train += [
                Lighting(0.1, IMAGENET_PCA['eigval'], IMAGENET_PCA['eigvec'])
            ]
        transform_train += [
            normalize,
        ]
        transform_eval += [
            transforms.ToTensor(),
            normalize,
        ]
    else:
        transform_train += [ToNumpy()]
        transform_eval += [ToNumpy()]

    transform_train = transforms.Compose(transform_train)
    transform_eval = transforms.Compose(transform_eval)

    train_dataset = ImageFolder(root + "/train", transform_train)

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset)

    val_dataset = ImageFolder(root + "/val", transform_eval)

    collate_fn = fast_collate if prefetch else torch.utils.data.dataloader.default_collate

    train_loader = DataLoader(train_dataset,
                              batch_size=batch_size,
                              shuffle=(train_sampler is None),
                              num_workers=num_workers,
                              pin_memory=True,
                              sampler=train_sampler,
                              collate_fn=collate_fn,
                              persistent_workers=True)

    val_loader = DataLoader(val_dataset,
                            batch_size=val_batch_size,
                            shuffle=False,
                            num_workers=num_workers,
                            pin_memory=True,
                            collate_fn=collate_fn,
                            persistent_workers=True)
    if prefetch:
        train_loader = PrefetchLoader(train_loader)
        val_loader = PrefetchLoader(val_loader)

    return train_loader, val_loader