Ejemplo n.º 1
0
def CalculateBitFlips():
    X_adv, _ = LoadData(DATA_PATH, file="npy")
    _, (X_test, _) = LoadData(DATA_PATH)

    lqvae = LQVAE(batch_size=BATCH_SIZE,
                  max_iters=MAX_ITERS_LQVAE,
                  latent_dim=LATENT_DIM,
                  learnrate_init=LEARN_RATE_INIT_LQVAE,
                  log_every=LOG_EVERY,
                  save_every=SAVE_EVERY,
                  image_path=IMAGE_PATH)
    classifier = Classifier(batch_size=BATCH_SIZE,
                            max_iters=MAX_ITERS_CLASSIFIER,
                            learnrate_init=LEARN_RATE_INIT_CLASSIFIER,
                            log_every=LOG_EVERY,
                            test_every=TEST_EVERY)

    lqvae.build_model_lqvae()
    classifier.build_model_classifier()

    saver = tf.train.Saver()

    with tf.Session() as session:
        saver.restore(session, MODEL_PATH)

        Bits(lqvae, classifier, X_test, X_adv, session)
Ejemplo n.º 2
0
def main(args):
    nlp = spacy.load('en_coref_lg')
    data_loader = LoadData(args.file)
    data = data_loader.get_tuples()

    for sample in data:
        doc = nlp(sample.text)
        corefs = unpack_spacy_doc(doc)
        if args.verbose:
            logger.info(corefs)
Ejemplo n.º 3
0
def DriveFGSM():
    (X_train, y_train), (X_test, y_test) = LoadData(DATA_PATH)

    lqvae = LQVAE(batch_size=BATCH_SIZE,
                  max_iters=MAX_ITERS_LQVAE,
                  latent_dim=LATENT_DIM,
                  learnrate_init=LEARN_RATE_INIT_LQVAE,
                  log_every=LOG_EVERY,
                  save_every=SAVE_EVERY,
                  image_path=IMAGE_PATH)
    classifier = Classifier(batch_size=BATCH_SIZE,
                            max_iters=MAX_ITERS_CLASSIFIER,
                            learnrate_init=LEARN_RATE_INIT_CLASSIFIER,
                            log_every=LOG_EVERY,
                            test_every=TEST_EVERY)

    lqvae.build_model_lqvae()
    classifier.build_model_classifier()

    saver = tf.train.Saver()

    with tf.Session() as session:
        saver.restore(session, MODEL_PATH)

        FGSM(lqvae, classifier, X_test, y_test, session, FGSM_IMAGE_PATH)
Ejemplo n.º 4
0
def EvaluatePerformance():
    # _, (X, y) = LoadData(DATA_PATH)
    X, y = LoadData(DATA_PATH, file="npy")

    lqvae = LQVAE(batch_size=BATCH_SIZE,
                  max_iters=MAX_ITERS_LQVAE,
                  latent_dim=LATENT_DIM,
                  learnrate_init=LEARN_RATE_INIT_LQVAE,
                  log_every=LOG_EVERY,
                  save_every=SAVE_EVERY,
                  image_path=IMAGE_PATH)
    classifier = Classifier(batch_size=BATCH_SIZE,
                            max_iters=MAX_ITERS_CLASSIFIER,
                            learnrate_init=LEARN_RATE_INIT_CLASSIFIER,
                            log_every=LOG_EVERY,
                            test_every=TEST_EVERY)

    lqvae.build_model_lqvae()
    classifier.build_model_classifier()

    saver = tf.train.Saver()

    with tf.Session() as session:
        saver.restore(session, MODEL_PATH)

        Evaluate(lqvae, classifier, X, y, session)
Ejemplo n.º 5
0
from matplotlib.colors import ListedColormap

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing
from visuals import ClassifierVisual

# Import model library
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix

# Import data
dataset = LoadData("Social_Network_Ads.csv").data

# Split the dataset
X = dataset.iloc[:, [2,3]].values
y = dataset.iloc[:, 4].values

# Lets do some preprocessing...
processor = PreProcessing()
# Split the data
X_train, X_test, y_train, y_test = processor.split(X, y, test_size=0.25)
# scale the data
X_train = processor.fit_scaler(X_train)
X_test = processor.scale(X_test)

# Lets fit the model now
classifier = SVC(kernel='rbf', random_state=0)
Ejemplo n.º 6
0
                        type=int,
                        default=50,
                        help='number of classes used')
    parser.add_argument('--num_samples_train',
                        type=int,
                        default=15,
                        help='number of samples per class used for training')
    parser.add_argument('--num_samples_test',
                        type=int,
                        default=5,
                        help='number of samples per class used for testing')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    args = parser.parse_args()

    train_image, train_label, test_image, test_label = LoadData(
        args.num_classes, args.num_samples_train, args.num_samples_test,
        args.seed)
    train_loader = torch.utils.data.DataLoader(HWDataset(
        train_image, train_label),
                                               shuffle=True,
                                               batch_size=8)
    test_loader = torch.utils.data.DataLoader(HWDataset(
        test_image, test_label),
                                              shuffle=False,
                                              batch_size=1)

    model = HWModel2(args.num_classes)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.5)
    epoch_num = 500
Ejemplo n.º 7
0
# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing
from visuals import ClassifierVisual

# Import model library
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA

# Import data
dataset = LoadData("Wine.csv").data

# Split the dataset
X = dataset.iloc[:, 0:13].values
y = dataset.iloc[:, 13].values

# Lets do some preprocessing...
processor = PreProcessing()
# Split the data
X_train, X_test, y_train, y_test = processor.split(X, y, test_size=0.2)
# scale the data
X_train = processor.fit_scaler(X_train)
X_test = processor.scale(X_test)

# Apply PCA
pca = PCA(n_components = 2)
Ejemplo n.º 8
0
# Import Requierd libraries
from xgboost import XGBClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_score

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing
from visuals import ClassifierVisual

# Import data
dataset = LoadData("Churn_Modelling.csv").data
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values

# Lets do some preprocessing...
processor = PreProcessing()
# Encode the data (Country/Gender)
X[:, 1] = processor.encode(X[:, 1])
X[:, 2] = processor.encode(X[:, 2])
X = processor.hot_encoding(data=X, features=[1])
X = X[:, 1:]

# Split the data into training+test
X_train, X_test, y_train, y_test = processor.split(X, y, test_size=0.2)

# Fitting XGboost
Ejemplo n.º 9
0
Archivo: nlp.py Proyecto: rheft/Sonny
from matplotlib.colors import ListedColormap
import random
import math
import re
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import GaussianNB
# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing
from visuals import ClassifierVisual
from sklearn.metrics import confusion_matrix
# Import Data
dataset = LoadData("Restaurant_Reviews.tsv", seperator='\t').data

### Cleaning the texts ###
ps = PorterStemmer()
corpus = []
for i in range(0, dataset.shape[0]):
    review = dataset['Review'][i]
    review = re.sub(pattern='[^a-zA-Z\s]', repl='', string=review)
    review = review.lower()
    review = review.split()
    review = [
        ps.stem(word) for word in review
        if not word in stopwords.words('english')
    ]
    review = " ".join(review)
    corpus.append(review)
Ejemplo n.º 10
0
def main():
    samples = LoadData(data_path).get_tuples()

    print(samples)
Ejemplo n.º 11
0
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing

# Load data
dataset = LoadData("Position_Salaries.csv").data

# Split the dataset
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values

# Decision Tree Regression
regressor_10 = RandomForestRegressor(n_estimators=10, random_state=0)
regressor_10.fit(X, y)
regressor_50 = RandomForestRegressor(n_estimators=50, random_state=0)
regressor_50.fit(X, y)
regressor_100 = RandomForestRegressor(n_estimators=100, random_state=0)
regressor_100.fit(X, y)
lin_reg = LinearRegression()
lin_reg.fit(X, y)
Ejemplo n.º 12
0
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import random
import math

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing
from visuals import ClassifierVisual

# Import Data
dataset = LoadData("Ads_CTR_Optimisation.csv").data

# Implementing Random Selection
N = 10000
d = 10
ads_selected = []
random_total_reward = 0
for n in range(0, N):
    ad = random.randrange(d)
    ads_selected.append(ad)
    reward = dataset.values[n, ad]
    random_total_reward = random_total_reward + reward
random_total_reward

#Visualize the random
plt.hist(ads_selected)
Ejemplo n.º 13
0
np.set_printoptions(suppress=True)
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import statsmodels.formula.api as sm

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing

# Load data
dataset = LoadData("50_Startups.csv").data

# Split the dataset
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values

# Using the PreProcessing class from preprocessing
processor = PreProcessing()
# Encoding dummy variables
X = processor.dummy_encoding(data=X, feature_position=3)

# Avoiding the dummy variable trap
X = X[:, 1:]

# Building the optimal model using Backward Elimination
X = np.append(arr=np.ones((X.shape[0], 1)).astype(int), values=X, axis=1)
Ejemplo n.º 14
0
from matplotlib.colors import ListedColormap

# Import lib files
envs = load_dotenv(find_dotenv(usecwd=True))
file = os.getenv("lib")
sys.path.insert(0, file)
print(file)
from utils import LoadData
from preprocessing import PreProcessing
from visuals import ClassifierVisual

# Import the apriori classifier
from apyori import apriori

# Data Preprocessing
dataset = LoadData("Market_Basket_Optimisation.csv", header=None).data

# Get transactions
transactions = []
for i in range(0, dataset.shape[0]):
    transactions.append(
        [str(dataset.values[i, j]) for j in range(0, dataset.shape[1])])

# create the model
rules = apriori(transactions,
                min_support=0.003,
                min_confidence=0.2,
                min_lift=3,
                min_length=2)

# Visualize!
Ejemplo n.º 15
0
from dotenv import load_dotenv, find_dotenv
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
np.set_printoptions(suppress=True)

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing

# Load the data
dataset = LoadData("Salary_Data.csv").data

# Split the dataset
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values

# Using the PreProcessing class from preprocessing
processor = PreProcessing()

# Split the data
X_train, X_test, y_train, y_test = processor.split(X, y, test_size=0.2, random_state=0)

# Fit Simple Linear Regression model
regressor = LinearRegression()
regressor.fit(X_train, y_train)
Ejemplo n.º 16
0
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler, TensorBoard
from model import model_cnn, model_resnet
from utils import LoadData, PARAM

arg = sys.argv
print(len(arg))
if len(arg) < 3:
    print("Usage: python3 <train_data_path> <output_model_path>")
    exit()

train_path = arg[1]
outfile = arg[2]

## preprocess data
## cross validation
X_train, Y_train = LoadData(train_path)
validation_rate = 0.1
index = np.int(X_train.shape[0] * (1 - validation_rate))
trainX, testX, trainY, testY = X_train[:index], X_train[
    index:], Y_train[:index], Y_train[index:]

## data augmentation
train_datagen = ImageDataGenerator(featurewise_center=True,
                                   featurewise_std_normalization=True,
                                   rotation_range=20,
                                   width_shift_range=0.2,
                                   height_shift_range=0.2,
                                   shear_range=0.2,
                                   zoom_range=0.2,
                                   horizontal_flip=False,
                                   vertical_flip=True)
Ejemplo n.º 17
0
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

# Import machine learning package
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing

# Importing the dataset
dataset = LoadData('Mall_Customers.csv').data
X = dataset.iloc[:, [3, 4]].values

# use dendogram to clusters
dendrogram = sch.dendrogram(sch.linkage(X, method='ward'))
plt.xlabel('Euclidean Distance')
plt.ylabel('Customers')
plt.title('Dendrogram')
plt.show()

# Fitting kmeans
hc = AgglomerativeClustering(n_clusters=5,
                             affinity='euclidean',
                             linkage='ward')
y_hc = hc.fit_predict(X)
Ejemplo n.º 18
0
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
import numpy as np
np.set_printoptions(suppress=True)
import pandas as pd
from sklearn.model_selection import train_test_split

# Import lib files
envs = load_dotenv(find_dotenv())
file = os.getenv("lib")
sys.path.insert(0, file)
from utils import LoadData
from preprocessing import PreProcessing

# Load the data
dataset = LoadData("Data.csv").data

# Split the dataset
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values

# Handling missing data
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
X[:, 1:3]

# Handling Categorical Variables
encoder_X = LabelEncoder()
one_hot_encoder = OneHotEncoder(categorical_features=[0])
X[:, 0] = encoder_X.fit_transform(X[:, 0])