Ejemplo n.º 1
0
    def isenclosedBy(self, points):
        '''Check whether this point is enclosed by a (convex) polygon.

           @param points: The polygon points (L{LatLon}[]).

           @return: C{True} if the polygon encloses this point,
                    C{False} otherwise.

           @raise TypeError: Some B{C{points}} are not L{LatLon}.

           @raise ValueError: Insufficient number of B{C{points}}.

           @example:

           >>> b = LatLon(45,1), LatLon(45,2), LatLon(46,2), LatLon(46,1)
           >>> p = LatLon(45.1, 1.1)
           >>> inside = p.isEnclosedBy(b)  # True

           @JSname: I{enclosedBy}.
        '''
        n, points = self.points2(points, closed=True)

        # use normal vector to this point for sign of α
        n0 = self.toNvector()

        if iterNumpy2(points):

            def _subtangles(n, points, n0):  # iterate
                vs = n0.minus(points[n - 1].toNvector())
                for i in range(n):
                    vs1 = n0.minus(points[i].toNvector())
                    yield vs.angleTo(vs1, vSign=n0)  # PYCHOK false
                    vs = vs1

            # sum subtended angles
            s = fsum(_subtangles(n, points, n0))

        else:
            # get vectors from this to each point
            vs = [n0.minus(points[i].toNvector()) for i in range(n)]
            # close the polygon
            vs.append(vs[0])

            # sum subtended angles of each edge (using n0 to determine sign)
            s = fsum(vs[i].angleTo(vs[i + 1], vSign=n0) for i in range(n))

        # Note, this method uses angle summation test: on a plane,
        # angles for an enclosed point will sum to 360°, angles for
        # an exterior point will sum to 0°.  On a sphere, enclosed
        # point angles will sum to less than 360° (due to spherical
        # excess), exterior point angles will be small but non-zero.

        # XXX are winding number optimisations equally applicable to
        # spherical surface?
        return abs(s) > PI
Ejemplo n.º 2
0
def areaOf(points, radius=R_M):
    '''Calculate the area of a (spherical) polygon (with great circle
       arcs joining consecutive points).

       @param points: The polygon points (L{LatLon}[]).
       @keyword radius: Optional, mean earth radius (C{meter}).

       @return: Polygon area (C{meter}, same units as B{C{radius}}, squared).

       @raise TypeError: Some B{C{points}} are not L{LatLon}.

       @raise ValueError: Insufficient number of B{C{points}}.

       @see: L{pygeodesy.areaOf}, L{sphericalTrigonometry.areaOf} and
             L{ellipsoidalKarney.areaOf}.

       @example:

       >>> b = LatLon(45, 1), LatLon(45, 2), LatLon(46, 2), LatLon(46, 1)
       >>> areaOf(b)  # 8666058750.718977
    '''
    n, points = _Nvll.points2(points, closed=True)

    # use vector to 1st point as plane normal for sign of α
    n0 = points[0].toNvector()

    if iterNumpy2(points):

        def _interangles(n, points, n0):  # iterate
            v2 = points[n - 2].toNvector()
            v1 = points[n - 1].toNvector()
            gc = v2.cross(v1)
            for i in range(n):
                v2 = points[i].toNvector()
                gc1 = v1.cross(v2)
                v1 = v2

                yield gc.angleTo(gc1, vSign=n0)
                gc = gc1

        # sum interior angles
        s = fsum(_interangles(n, points, n0))

    else:
        # get great-circle vector for each edge
        gc, v1 = [], points[n - 1].toNvector()
        for i in range(n):
            v2 = points[i].toNvector()
            gc.append(v1.cross(v2))  # PYCHOK false, does have .cross
            v1 = v2
        gc.append(gc[0])  # XXX needed?

        # sum interior angles: depending on whether polygon is cw or ccw,
        # angle between edges is π−α or π+α, where α is angle between
        # great-circle vectors; so sum α, then take n·π − |Σα| (cannot
        # use Σ(π−|α|) as concave polygons would fail)
        s = fsum(gc[i].angleTo(gc[i + 1], vSign=n0) for i in range(n))

    # using Girard’s theorem: A = [Σθᵢ − (n−2)·π]·R²
    # (PI2 - abs(s) == (n*PI - abs(s)) - (n-2)*PI)
    return abs(PI2 - abs(s)) * radius**2
Ejemplo n.º 3
0
def areaOf(points, radius=R_M, wrap=True):
    '''Calculate the area of a (spherical) polygon (with great circle
       arcs joining the points).

       @param points: The polygon points (L{LatLon}[]).
       @keyword radius: Optional, mean earth radius (C{meter}).
       @keyword wrap: Wrap and unroll longitudes (C{bool}).

       @return: Polygon area (C{meter}, same units as I{radius}, squared).

       @raise TypeError: Some I{points} are not L{LatLon}.

       @raise ValueError: Insufficient number of I{points}.

       @note: The area is based on Karney's U{'Area of a spherical polygon'
              <http://osgeo-org.1560.x6.nabble.com/Area-of-a-spherical-polygon-td3841625.html>}.

       @see: L{pygeodesy.areaOf}, L{sphericalNvector.areaOf} and
             L{ellipsoidalKarney.areaOf}.

       @example:

       >>> b = LatLon(45, 1), LatLon(45, 2), LatLon(46, 2), LatLon(46, 1)
       >>> areaOf(b)  # 8666058750.718977

       >>> c = LatLon(0, 0), LatLon(1, 0), LatLon(0, 1)
       >>> areaOf(c)  # 6.18e9
    '''
    n, points = _Trll.points2(points, closed=True)

    # Area method due to Karney: for each edge of the polygon,
    #
    #                tan(Δλ/2) · (tan(φ1/2) + tan(φ2/2))
    #     tan(E/2) = ------------------------------------
    #                     1 + tan(φ1/2) · tan(φ2/2)
    #
    # where E is the spherical excess of the trapezium obtained by
    # extending the edge to the equator-circle vector for each edge

    if iterNumpy2(points):

        def _exs(n, points):  # iterate over spherical edge excess
            a1, b1 = points[n - 1].to2ab()
            ta1 = tan_2(a1)
            for i in range(n):
                a2, b2 = points[i].to2ab()
                db, b2 = unrollPI(b1, b2, wrap=wrap)
                ta2, tdb = map1(tan_2, a2, db)
                yield atan2(tdb * (ta1 + ta2), 1 + ta1 * ta2)
                ta1, b1 = ta2, b2

        s = fsum(_exs(n, points)) * 2

    else:
        a1, b1 = points[n - 1].to2ab()
        s, ta1 = [], tan_2(a1)
        for i in range(n):
            a2, b2 = points[i].to2ab()
            db, b2 = unrollPI(b1, b2, wrap=wrap)
            ta2, tdb = map1(tan_2, a2, db)
            s.append(atan2(tdb * (ta1 + ta2), 1 + ta1 * ta2))
            ta1, b1 = ta2, b2

        s = fsum(s) * 2

    if isPoleEnclosedBy(points):
        s = abs(s) - PI2

    return abs(s * radius**2)
Ejemplo n.º 4
0
    def isenclosedBy(self, points):
        '''Check whether a (convex) polygon encloses this point.

           @param points: The polygon points (L{LatLon}[]).

           @return: C{True} if the polygon encloses this point,
                    C{False} otherwise.

           @raise ValueError: Insufficient number of I{points} or
                              non-convex polygon.

           @raise TypeError: Some I{points} are not L{LatLon}.

           @example:

           >>> b = LatLon(45,1), LatLon(45,2), LatLon(46,2), LatLon(46,1)
           >>> p = LatLon(45,1, 1.1)
           >>> inside = p.isEnclosedBy(b)  # True
        '''
        n, points = self.points2(points, closed=True)

        n0 = self.toVector3d()

        if iterNumpy2(points):

            v1 = points[n - 1].toVector3d()
            v2 = points[n - 2].toVector3d()
            gc1 = v2.cross(v1)
            t0 = gc1.angleTo(n0) > PI_2
            for i in range(n):
                v2 = points[i].toVector3d()
                gc = v1.cross(v2)
                v1 = v2

                ti = gc.angleTo(n0) > PI_2
                if ti != t0:
                    return False  # outside

                if gc1.angleTo(gc, vSign=n0) < 0:
                    raise ValueError('non-convex: %r...' % (points[:2], ))
                gc1 = gc

        else:
            # get great-circle vector for each edge
            gc, v1 = [], points[n - 1].toVector3d()
            for i in range(n):
                v2 = points[i].toVector3d()
                gc.append(v1.cross(v2))
                v1 = v2

            # check whether this point on same side of all
            # polygon edges (to the left or right depending
            # on anti-/clockwise polygon direction)
            t0 = gc[0].angleTo(n0) > PI_2  # True if on the right
            for i in range(1, n):
                ti = gc[i].angleTo(n0) > PI_2
                if ti != t0:  # different sides of edge i
                    return False  # outside

            # check for convex polygon (otherwise
            # the test above is not reliable)
            gc1 = gc[n - 1]
            for gc2 in gc:
                # angle between gc vectors, signed by direction of n0
                if gc1.angleTo(gc2, vSign=n0) < 0:
                    raise ValueError('non-convex: %r...' % (points[:2], ))
                gc1 = gc2

        return True  # inside