Ejemplo n.º 1
0
 def total_expand(inputs):
     source_nodes = list(ut.nx_source_nodes(inputs.exi_graph))
     sink = list(ut.nx_sink_nodes(inputs.exi_graph))[0]
     rmi_list = [
         RootMostInput(node, sink, inputs.exi_graph)
         for node in source_nodes
     ]
     exi_graph = inputs.exi_graph
     table = inputs.table
     reorder = True
     new_inputs = TableInput(rmi_list, exi_graph, table, reorder=reorder)
     return new_inputs
Ejemplo n.º 2
0
def nx_all_nodes_between(graph, source, target, data=False):
    """
    Find all nodes with on paths between source and target.
    """
    import utool as ut
    import networkx as nx
    if source is None:
        # assume there is a single source
        sources = list(ut.nx_source_nodes(graph))
        assert len(sources) == 1, (
            'specify source if there is not only one')
        source = sources[0]
    if target is None:
        # assume there is a single source
        sinks = list(ut.nx_sink_nodes(graph))
        assert len(sinks) == 1, (
            'specify sink if there is not only one')
        target = sinks[0]
    all_simple_paths = list(nx.all_simple_paths(graph, source, target))
    nodes = list(ut.union_ordered(ut.flatten(all_simple_paths)))
    return nodes
Ejemplo n.º 3
0
def nx_dag_node_rank(graph, nodes=None):
    """
    Returns rank of nodes that define the "level" each node is on in a
    topological sort. This is the same as the Graphviz dot rank.

    Ignore:
        simple_graph = ut.simplify_graph(exi_graph)
        adj_dict = ut.nx_to_adj_dict(simple_graph)
        import plottool as pt
        pt.qt4ensure()
        pt.show_nx(graph)

    Example:
        >>> # ENABLE_DOCTEST
        >>> from utool.util_graph import *  # NOQA
        >>> import utool as ut
        >>> adj_dict = {0: [5], 1: [5], 2: [1], 3: [4], 4: [0], 5: [], 6: [4], 7: [9], 8: [6], 9: [1]}
        >>> import networkx as nx
        >>> nodes = [2, 1, 5]
        >>> f_graph = ut.nx_from_adj_dict(adj_dict, nx.DiGraph)
        >>> graph = f_graph.reverse()
        >>> #ranks = ut.nx_dag_node_rank(graph, nodes)
        >>> ranks = ut.nx_dag_node_rank(graph, nodes)
        >>> result = ('ranks = %r' % (ranks,))
        >>> print(result)
        ranks = [3, 2, 1]
    """
    import utool as ut
    source = list(ut.nx_source_nodes(graph))[0]
    longest_paths = dict([(target, dag_longest_path(graph, source, target))
                          for target in graph.nodes()])
    node_to_rank = ut.map_dict_vals(len, longest_paths)
    if nodes is None:
        return node_to_rank
    else:
        ranks = ut.dict_take(node_to_rank, nodes)
        return ranks
Ejemplo n.º 4
0
def draw_twoday_count(ibs, visit_info_list_):
    import copy
    visit_info_list = copy.deepcopy(visit_info_list_)

    aids_day1, aids_day2 = ut.take_column(visit_info_list_, 'aids')
    nids_day1, nids_day2 = ut.take_column(visit_info_list_, 'unique_nids')
    resight_nids = ut.isect(nids_day1, nids_day2)

    if False:
        # HACK REMOVE DATA TO MAKE THIS FASTER
        num = 20
        for info in visit_info_list:
            non_resight_nids = list(set(info['unique_nids']) - set(resight_nids))
            sample_nids2 = non_resight_nids[0:num] + resight_nids[:num]
            info['grouped_aids'] = ut.dict_subset(info['grouped_aids'], sample_nids2)
            info['unique_nids'] = sample_nids2

    # Build a graph of matches
    if False:

        debug = False

        for info in visit_info_list:
            edges = []
            grouped_aids = info['grouped_aids']

            aids_list = list(grouped_aids.values())
            ams_list = ibs.get_annotmatch_rowids_in_cliques(aids_list)
            aids1_list = ibs.unflat_map(ibs.get_annotmatch_aid1, ams_list)
            aids2_list = ibs.unflat_map(ibs.get_annotmatch_aid2, ams_list)
            for ams, aids, aids1, aids2 in zip(ams_list, aids_list, aids1_list, aids2_list):
                edge_nodes = set(aids1 + aids2)
                ##if len(edge_nodes) != len(set(aids)):
                #    #print('--')
                #    #print('aids = %r' % (aids,))
                #    #print('edge_nodes = %r' % (edge_nodes,))
                bad_aids = edge_nodes - set(aids)
                if len(bad_aids) > 0:
                    print('bad_aids = %r' % (bad_aids,))
                unlinked_aids = set(aids) - edge_nodes
                mst_links = list(ut.itertwo(list(unlinked_aids) + list(edge_nodes)[:1]))
                bad_aids.add(None)
                user_links = [(u, v) for (u, v) in zip(aids1, aids2) if u not in bad_aids and v not in bad_aids]
                new_edges = mst_links + user_links
                new_edges = [(int(u), int(v)) for u, v in new_edges if u not in bad_aids and v not in bad_aids]
                edges += new_edges
            info['edges'] = edges

        # Add edges between days
        grouped_aids1, grouped_aids2 = ut.take_column(visit_info_list, 'grouped_aids')
        nids_day1, nids_day2 = ut.take_column(visit_info_list, 'unique_nids')
        resight_nids = ut.isect(nids_day1, nids_day2)

        resight_aids1 = ut.take(grouped_aids1, resight_nids)
        resight_aids2 = ut.take(grouped_aids2, resight_nids)
        #resight_aids3 = [list(aids1) + list(aids2) for aids1, aids2 in zip(resight_aids1, resight_aids2)]

        ams_list = ibs.get_annotmatch_rowids_between_groups(resight_aids1, resight_aids2)
        aids1_list = ibs.unflat_map(ibs.get_annotmatch_aid1, ams_list)
        aids2_list = ibs.unflat_map(ibs.get_annotmatch_aid2, ams_list)

        between_edges = []
        for ams, aids1, aids2, rawaids1, rawaids2 in zip(ams_list, aids1_list, aids2_list, resight_aids1, resight_aids2):
            link_aids = aids1 + aids2
            rawaids3 = rawaids1 + rawaids2
            badaids = ut.setdiff(link_aids, rawaids3)
            assert not badaids
            user_links = [(int(u), int(v)) for (u, v) in zip(aids1, aids2)
                          if u is not None and v is not None]
            # HACK THIS OFF
            user_links = []
            if len(user_links) == 0:
                # Hack in an edge
                between_edges += [(rawaids1[0], rawaids2[0])]
            else:
                between_edges += user_links

        assert np.all(0 == np.diff(np.array(ibs.unflat_map(ibs.get_annot_nids, between_edges)), axis=1))

        import plottool_ibeis as pt
        import networkx as nx
        #pt.qt4ensure()
        #len(list(nx.connected_components(graph1)))
        #print(ut.graph_info(graph1))

        # Layout graph
        layoutkw = dict(
            prog='neato',
            draw_implicit=False, splines='line',
            #splines='curved',
            #splines='spline',
            #sep=10 / 72,
            #prog='dot', rankdir='TB',
        )

        def translate_graph_to_origin(graph):
            x, y, w, h = ut.get_graph_bounding_box(graph)
            ut.translate_graph(graph, (-x, -y))

        def stack_graphs(graph_list, vert=False, pad=None):
            graph_list_ = [g.copy() for g in graph_list]
            for g in graph_list_:
                translate_graph_to_origin(g)
            bbox_list = [ut.get_graph_bounding_box(g) for g in graph_list_]
            if vert:
                dim1 = 3
                dim2 = 2
            else:
                dim1 = 2
                dim2 = 3
            dim1_list = np.array([bbox[dim1] for bbox in bbox_list])
            dim2_list = np.array([bbox[dim2] for bbox in bbox_list])
            if pad is None:
                pad = np.mean(dim1_list) / 2
            offset1_list = ut.cumsum([0] + [d + pad for d in dim1_list[:-1]])
            max_dim2 = max(dim2_list)
            offset2_list = [(max_dim2 - d2) / 2 for d2 in dim2_list]
            if vert:
                t_xy_list = [(d2, d1) for d1, d2 in zip(offset1_list, offset2_list)]
            else:
                t_xy_list = [(d1, d2) for d1, d2 in zip(offset1_list, offset2_list)]

            for g, t_xy in zip(graph_list_, t_xy_list):
                ut.translate_graph(g, t_xy)
                nx.set_node_attributes(g, name='pin', values='true')

            new_graph = nx.compose_all(graph_list_)
            #pt.show_nx(new_graph, layout='custom', node_labels=False, as_directed=False)  # NOQA
            return new_graph

        # Construct graph
        for count, info in enumerate(visit_info_list):
            graph = nx.Graph()
            edges = [(int(u), int(v)) for u, v in info['edges']
                     if u is not None and v is not None]
            graph.add_edges_from(edges, attr_dict={'zorder': 10})
            nx.set_node_attributes(graph, name='zorder', values=20)

            # Layout in neato
            _ = pt.nx_agraph_layout(graph, inplace=True, **layoutkw)  # NOQA

            # Extract components and then flatten in nid ordering
            ccs = list(nx.connected_components(graph))
            root_aids = []
            cc_graphs = []
            for cc_nodes in ccs:
                cc = graph.subgraph(cc_nodes)
                try:
                    root_aids.append(list(ut.nx_source_nodes(cc.to_directed()))[0])
                except nx.NetworkXUnfeasible:
                    root_aids.append(list(cc.nodes())[0])
                cc_graphs.append(cc)

            root_nids = ibs.get_annot_nids(root_aids)
            nid2_graph = dict(zip(root_nids, cc_graphs))

            resight_nids_ = set(resight_nids).intersection(set(root_nids))
            noresight_nids_ = set(root_nids) - resight_nids_

            n_graph_list = ut.take(nid2_graph, sorted(noresight_nids_))
            r_graph_list = ut.take(nid2_graph, sorted(resight_nids_))

            if len(n_graph_list) > 0:
                n_graph = nx.compose_all(n_graph_list)
                _ = pt.nx_agraph_layout(n_graph, inplace=True, **layoutkw)  # NOQA
                n_graphs = [n_graph]
            else:
                n_graphs = []

            r_graphs = [stack_graphs(chunk) for chunk in ut.ichunks(r_graph_list, 100)]
            if count == 0:
                new_graph = stack_graphs(n_graphs + r_graphs, vert=True)
            else:
                new_graph = stack_graphs(r_graphs[::-1] + n_graphs, vert=True)

            #pt.show_nx(new_graph, layout='custom', node_labels=False, as_directed=False)  # NOQA
            info['graph'] = new_graph

        graph1_, graph2_ = ut.take_column(visit_info_list, 'graph')
        if False:
            _ = pt.show_nx(graph1_, layout='custom', node_labels=False, as_directed=False)  # NOQA
            _ = pt.show_nx(graph2_, layout='custom', node_labels=False, as_directed=False)  # NOQA

        graph_list = [graph1_, graph2_]
        twoday_graph = stack_graphs(graph_list, vert=True, pad=None)
        nx.set_node_attributes(twoday_graph, name='pin', values='true')

        if debug:
            ut.nx_delete_None_edge_attr(twoday_graph)
            ut.nx_delete_None_node_attr(twoday_graph)
            print('twoday_graph(pre) info' + ut.repr3(ut.graph_info(twoday_graph), nl=2))

        # Hack, no idea why there are nodes that dont exist here
        between_edges_ = [edge for edge in between_edges
                          if twoday_graph.has_node(edge[0]) and twoday_graph.has_node(edge[1])]

        twoday_graph.add_edges_from(between_edges_, attr_dict={'alpha': .2, 'zorder': 0})
        ut.nx_ensure_agraph_color(twoday_graph)

        layoutkw['splines'] = 'line'
        layoutkw['prog'] = 'neato'
        agraph = pt.nx_agraph_layout(twoday_graph, inplace=True, return_agraph=True, **layoutkw)[-1]  # NOQA
        if False:
            fpath = ut.truepath('~/ggr_graph.png')
            agraph.draw(fpath)
            ut.startfile(fpath)

        if debug:
            print('twoday_graph(post) info' + ut.repr3(ut.graph_info(twoday_graph)))

        _ = pt.show_nx(twoday_graph, layout='custom', node_labels=False, as_directed=False)  # NOQA
Ejemplo n.º 5
0
def make_expanded_input_graph(graph, target):
    """
    Starting from the `target` property we trace all possible paths in the
    `graph` back to all sources.

    Args:
        graph (nx.DiMultiGraph): the dependency graph with a single source.
        target (str): a single target node in graph

    Notes:
        Each edge in the graph must have a `local_input_id` that defines the
        type of edge it is: (eg one-to-many, one-to-one, nwise/multi).

        # Step 1: Extracting the Relevant Subgraph
        We start by searching for all sources of the graph (we assume there is
        only one). Then we extract the subgraph defined by all edges between
        the sources and the target.  We augment this graph with a dummy super
        source `s` and super sink `t`. This allows us to associate an edge with
        the real source and sink.

        # Step 2: Trace all paths from `s` to `t`.
        Create a set of all paths from the source to the sink and accumulate
        the `local_input_id` of each edge along the path. This will uniquely
        identify each path. We use a hack to condense the accumualated ids in
        order to display them nicely.

        # Step 3: Create the new `exi_graph`
        Using the traced paths with ids we construct a new graph representing
        expanded inputs. The nodes in the original graph will be copied for each
        unique path that passes through the node. We identify these nodes using
        the accumulated ids built along the edges in our path set.  For each
        path starting from the target we add each node augmented with the
        accumulated ids on its output(?) edge. We also add the edges along
        these paths which results in the final `exi_graph`.

        # Step 4: Identify valid inputs candidates
        The purpose of this graph is to identify which inputs are needed
        to compute dependant properties. One valid set of inputs is all
        sources of the graph. However, sometimes it is preferable to specify
        a model that may have been trained from many inputs. Therefore any
        node with a one-to-many input edge may also be specified as an input.

        # Step 5: Identify root-most inputs
        The user will only specify one possible set of the inputs. We refer  to
        this set as the "root-most" inputs. This is a set of candiate nodes
        such that all paths from the sink to the super source are blocked.  We
        default to the set of inputs which results in the fewest dependency
        computations. However this is arbitary.

        The last step that is not represented here is to compute the order that
        the branches must be specified in when given to the depcache for a
        computation.

    Returns:
        nx.DiGraph: exi_graph: the expanded input graph

    Notes:
        All * nodes are defined to be distinct.
        TODO: To make a * node non-distinct it must be suffixed with an
        identifier.

    CommandLine:
        python -m dtool.input_helpers make_expanded_input_graph --show

    Example:
        >>> # ENABLE_DOCTEST
        >>> from dtool.input_helpers import *  # NOQA
        >>> from dtool.example_depcache2 import * # NOQA
        >>> depc = testdata_depc3()
        >>> table = depc['smk_match']
        >>> table = depc['vsone']
        >>> graph = table.depc.explicit_graph.copy()
        >>> target = table.tablename
        >>> exi_graph = make_expanded_input_graph(graph, target)
        >>> x = list(exi_graph.nodes())[0]
        >>> print('x = %r' % (x,))
        >>> ut.quit_if_noshow()
        >>> import plottool as pt
        >>> pt.show_nx(graph, fnum=1, pnum=(1, 2, 1))
        >>> pt.show_nx(exi_graph, fnum=1, pnum=(1, 2, 2))
        >>> ut.show_if_requested()
    """

    # FIXME: this does not work correctly when
    # The nesting of non-1-to-1 dependencies is greater than 2 (I think)
    # algorithm for finding inputs does not work.

    # FIXME: two vocabs have the same edge id, they should be the same in the
    # Expanded Input Graph as well. Their accum_id needs to be changed.

    def condense_accum_ids(rinput_path_id):
        # Hack to condense and consolidate graph sources
        prev = None
        compressed = []
        for item in rinput_path_id:
            if item == '1' and prev is not None:
                pass  # done append ones
            elif item != prev:
                compressed.append(item)
            prev = item
        #if len(compressed) > 1 and compressed[0] in ['1', '*']:
        if len(compressed) > 1 and compressed[0] == '1':
            compressed = compressed[1:]
        compressed = tuple(compressed)
        return compressed

    BIG_HACK = True

    #BIG_HACK = False

    def condense_accum_ids_stars(rinput_path_id):
        # Hack to condense and consolidate graph sources
        rcompressed = []
        has_star = False
        # Remove all but the final star (this is a really bad hack)
        for item in reversed(rinput_path_id):
            is_star = '*' in item
            if not (is_star and has_star):
                if not has_star:
                    rcompressed.append(item)
            has_star = has_star or is_star
        compressed = tuple(rcompressed[::-1])
        return compressed

    def accumulate_input_ids(edge_list):
        """
        python -m dtool.example_depcache2 testdata_depc4 --show
        """
        edge_data = ut.take_column(edge_list, 3)
        # We are accumulating local input ids
        toaccum_list_ = ut.dict_take_column(edge_data, 'local_input_id')
        if BIG_HACK and True:
            v_list = ut.take_column(edge_list, 1)
            # show the local_input_ids at the entire level
            pred_ids = ([[
                x['local_input_id']
                for x in list(graph.pred[node].values())[0].values()
            ] if len(graph.pred[node]) else [] for node in v_list])
            toaccum_list = [
                x + ':' + ';'.join(y) for x, y in zip(toaccum_list_, pred_ids)
            ]
        else:
            toaccum_list = toaccum_list_

        # Default dumb accumulation
        accum_ids_ = ut.cumsum(zip(toaccum_list), tuple())
        accum_ids = ut.lmap(condense_accum_ids, accum_ids_)
        if BIG_HACK:
            accum_ids = ut.lmap(condense_accum_ids_stars, accum_ids)
            accum_ids = [('t', ) + x for x in accum_ids]
        ut.dict_set_column(edge_data, 'accum_id', accum_ids)
        return accum_ids

    sources = list(ut.nx_source_nodes(graph))
    print(sources)
    # assert len(sources) == 1, 'expected a unique source'
    source = sources[0]

    graph = graph.subgraph(ut.nx_all_nodes_between(graph, source,
                                                   target)).copy()
    # Remove superfluous data
    ut.nx_delete_edge_attr(
        graph,
        [
            'edge_type',
            'isnwise',
            'nwise_idx',
            # 'parent_colx',
            'ismulti'
        ])

    # Make all '*' edges have distinct local_input_id's.
    # TODO: allow non-distinct suffixes
    count = ord('a')
    for edge in graph.edges(keys=True, data=True):
        dat = edge[3]
        if dat['local_input_id'] == '*':
            dat['local_input_id'] = '*' + chr(count)
            dat['taillabel'] = '*' + chr(count)
            count += 1

    # Augment with dummy super source/sink nodes
    source_input = 'source_input'
    target_output = 'target_output'
    graph.add_edge(source_input, source, local_input_id='s', taillabel='1')
    graph.add_edge(target, target_output, local_input_id='t', taillabel='1')

    # Find all paths from the table to the source.
    paths_to_source = ut.all_multi_paths(graph,
                                         source_input,
                                         target_output,
                                         data=True)

    # Build expanded input graph
    # The inputs to this table can be derived from this graph.
    # The output is a new expanded input graph.
    exi_graph = nx.DiGraph()
    for path in paths_to_source:
        # Accumlate unique identifiers along the reversed path
        edge_list = ut.reverse_path_edges(path)
        accumulate_input_ids(edge_list)

        # A node's output(?) on this path determines its expanded branch id
        exi_nodes = [
            ExiNode(v, BranchId(d['accum_id'], k, d.get('parent_colx', -1)))
            for u, v, k, d in edge_list[:-1]
        ]
        exi_node_to_label = {
            node: node[0] + '[' + ','.join([str(x) for x in node[1]]) + ']'
            for node in exi_nodes
        }
        exi_graph.add_nodes_from(exi_nodes)
        nx.set_node_attributes(exi_graph,
                               name='label',
                               values=exi_node_to_label)

        # Undo any accumulation ordering and remove dummy nodes
        old_edges = ut.reverse_path_edges(edge_list[1:-1])
        new_edges = ut.reverse_path_edges(list(ut.itertwo(exi_nodes)))
        for new_edge, old_edge in zip(new_edges, old_edges):
            u2, v2 = new_edge[:2]
            d = old_edge[3]
            taillabel = d['taillabel']
            parent_colx = d.get('parent_colx', -1)
            if not exi_graph.has_edge(u2, v2):
                exi_graph.add_edge(u2,
                                   v2,
                                   taillabel=taillabel,
                                   parent_colx=parent_colx)

    sink_nodes = list(ut.nx_sink_nodes(exi_graph))
    source_nodes = list(ut.nx_source_nodes(exi_graph))
    assert len(sink_nodes) == 1, 'expected a unique sink'
    sink_node = sink_nodes[0]

    # First identify if a node is root_specifiable
    node_dict = ut.nx_node_dict(exi_graph)
    for node in exi_graph.nodes():
        root_specifiable = False
        # for edge in exi_graph.in_edges(node, keys=True):
        for edge in exi_graph.in_edges(node):
            # key = edge[-1]
            # assert key == 0, 'multi di graph is necessary'
            edata = exi_graph.get_edge_data(*edge)
            if edata.get('taillabel').startswith('*'):
                if node != sink_node:
                    root_specifiable = True
        if exi_graph.in_degree(node) == 0:
            root_specifiable = True
        node_dict[node]['root_specifiable'] = root_specifiable

    # Need to specify any combo of red nodes such that
    # 1) for each path from a (leaf) to the (root) there is exactly one red
    # node along that path.  This garentees that all inputs are gievn.
    path_list = ut.flatten([
        nx.all_simple_paths(exi_graph, source_node, sink_node)
        for source_node in source_nodes
    ])
    rootmost_nodes = set([])
    for path in path_list:
        flags = [node_dict[node]['root_specifiable'] for node in path]
        valid_nodes = ut.compress(path, flags)
        rootmost_nodes.add(valid_nodes[-1])
    # Rootmost nodes are the ones specifiable by default when computing the
    # normal property.
    for node in rootmost_nodes:
        node_dict[node]['rootmost'] = True

    # We actually need to hack away any root-most nodes that have another
    # rootmost node as the parent.  Otherwise, this would cause constraints in
    # what the user could specify as valid input combinations.
    # ie: specify a vocab and an index, but the index depends on the vocab.
    # this forces the user to specify the vocab that was the parent of the index
    # the user should either just specify the index and have the vocab inferred
    # or for now, we just dont allow this to happen.
    nx.get_node_attributes(exi_graph, 'rootmost')

    recolor_exi_graph(exi_graph, rootmost_nodes)
    return exi_graph
Ejemplo n.º 6
0
    def _order_rmi_list(inputs, reorder=False):
        """
        Attempts to put the required inputs in the correct order as specified
        by the order of declared dependencies the user specified during the
        depcache declaration (in the user defined decorators).
        for 1-to-1 properties this is just the root_ids.

        For vsone, it should be root1, root2
        For vsmany it should be root1, root2*

        Ok, here is the measure:
        Order is primarily determined by your parent input order as given in
        the table definition. If one parent expands in to multiple parents then
        the secondary ordering inherits from the parents. If the two paths
        merge, then there is no problem. There is only one parent.

        CommandLine:
            python -m dtool.input_helpers _order_rmi_list --show

        Example:
            >>> # ENABLE_DOCTEST
            >>> from dtool.example_depcache2 import *  # NOQA
            >>> depc = testdata_depc3()
            >>> exi_inputs1 = depc['vsone'].rootmost_inputs.total_expand()
            >>> assert exi_inputs1.rmi_list[0] != exi_inputs1.rmi_list[1]
            >>> print('exi_inputs1 = %r' % (exi_inputs1,))
            >>> exi_inputs2 = depc['neighbs'].rootmost_inputs.total_expand()
            >>> assert '*' not in str(exi_inputs2.rmi_list[0])
            >>> assert '*' in str(exi_inputs2.rmi_list[1])
            >>> print('exi_inputs2 = %r' % (exi_inputs2,))
            >>> exi_inputs3 = depc['meta_labeler'].rootmost_inputs.total_expand()
            >>> print('exi_inputs3 = %r' % (exi_inputs3,))
            >>> exi_inputs4 = depc['smk_match'].rootmost_inputs.total_expand()
            >>> print('exi_inputs4 = %r' % (exi_inputs4,))
            >>> ut.quit_if_noshow()
            >>> import plottool as pt
            >>> from plottool.interactions import ExpandableInteraction
            >>> inter = ExpandableInteraction(nCols=2)
            >>> depc['vsone'].show_dep_subgraph(inter)
            >>> exi_inputs1.show_exi_graph(inter)
            >>> depc['neighbs'].show_dep_subgraph(inter)
            >>> exi_inputs2.show_exi_graph(inter)
            >>> depc['meta_labeler'].show_dep_subgraph(inter)
            >>> exi_inputs3.show_exi_graph(inter)
            >>> depc['smk_match'].show_dep_subgraph(inter)
            >>> exi_inputs4.show_exi_graph(inter)
            >>> inter.start()
            >>> #depc['viewpoint_classification'].show_input_graph()
            >>> ut.show_if_requested()
        """
        # hack for labels
        rmi_list = ut.unique(inputs.rmi_list)
        rootmost_exi_nodes = [rmi.node for rmi in rmi_list]

        # Ensure that nodes form a complete rootmost set
        # Remove over-complete nodes
        sink_nodes = list(ut.nx_sink_nodes(inputs.exi_graph))
        source_nodes = list(ut.nx_source_nodes(inputs.exi_graph))
        assert len(sink_nodes) == 1, 'can only have one sink node'
        sink_node = sink_nodes[0]
        path_list = ut.flatten([
            nx.all_simple_paths(inputs.exi_graph, source_node, sink_node)
            for source_node in source_nodes
        ])
        rootmost_nodes = set([])
        rootmost_candidates = set(rootmost_exi_nodes)
        rootmost_nodes = set([])
        for path in path_list:
            flags = [node in rootmost_candidates for node in path]
            if not any(flags):
                raise ValueError('Missing RMI on path=%r' % (path, ))
            valid_nodes = ut.compress(path, flags)
            rootmost_nodes.add(valid_nodes[-1])

        if reorder:
            # This re-orders the parent input specs based on the declared order
            # input defined by the user. This ordering is represented by the
            # parent_colx property from the table.parents()
            if len(inputs.rmi_list) > 1:
                inputs.rmi_list = sort_rmi_list(inputs.rmi_list)
        else:
            flags = [x in rootmost_nodes for x in inputs.rmi_list]
            inputs.rmi_list = ut.compress(inputs.rmi_list, flags)