Ejemplo n.º 1
0
def objective(params):
    """
    Objective function to be minimized: loss with respect to our hyperparameters.
    """
    enc_kernel1 = int(params[0])
    enc_kernel2 = int(params[1])
    enc_kernel3 = int(params[2])
    dec_kernel1 = int(params[3])
    dec_kernel2 = int(params[4])
    dec_kernel3 = int(params[5])

    # Contact matrices are 21x21
    input_dim = 441

    encoder = Encoder(input_size=input_dim,
                      latent_size=8,
                      kernel1=enc_kernel1,
                      kernel2=enc_kernel2,
                      kernel3=enc_kernel3)

    decoder = Decoder(latent_dim=8,
                      output_size=input_size,
                      kernel1=dec_kernel1,
                      kernel2=dec_kernel2,
                      kernel3=dec_kernel3)

    vae = VAE(encoder, decoder)
    criterion = nn.MSELoss()

    use_cuda = args.use_cuda
    if use_cuda:
        encoder = encoder.cuda()
        deconder = decoder.cuda()
        vae = vae.cuda()
        criterion = criterion.cuda()

    optimizer = optim.Adam(vae.parameters(), lr=0.0001)

    epoch_loss = 0
    total_loss = 0
    for epoch in range(100):
        for i, data in enumerate(trainloader, 0):
            inputs = data['cont_matrix']
            inputs = inputs.resize_(args.batch_size, 1, 21, 21)
            inputs = inputs.float()
            if use_cuda:
                inputs = inputs.cuda()
            inputs = Variable(inputs)
            optimizer.zero_grad()
            dec = vae(inputs)
            ll = latent_loss(vae.z_mean, vae.z_sigma)
            loss = criterion(dec, inputs) + ll
            loss.backward()
            optimizer.step()
            epoch_loss = loss.data[0]
        print(epoch, epoch_loss)
        total_loss += epoch_loss

    return total_loss
Ejemplo n.º 2
0
def main():
    use_cuda = args.use_cuda

    train_data = UnlabeledContact(data=args.data_dir)
    print('Number of samples: {}'.format(len(train_data)))
    trainloader = DataLoader(train_data, batch_size=args.batch_size)

    # Contact matrices are 21x21
    input_size = 441

    encoder = Encoder(input_size=input_size, latent_size=3)
    decoder = Decoder(latent_size=3, output_size=input_size)
    vae = VAE(encoder, decoder, use_cuda=use_cuda)
    criterion = nn.MSELoss()

    if use_cuda:
        encoder = nn.DataParallel(encoder)
        decoder = nn.DataParallel(decoder)
        encoder = encoder.cuda().half()
        decoder = decoder.cuda().half()
        vae = nn.DataParallel(vae)
        vae = vae.cuda().half()
        criterion = criterion.cuda().half()

    optimizer = optim.SGD(vae.parameters(), lr=0.01)

    clock = AverageMeter(name='clock16', rank=0)
    epoch_loss = 0
    total_loss = 0
    end = time.time()
    for epoch in range(15):
        for batch_idx, data in enumerate(trainloader):
            inputs = data['cont_matrix']
            #           inputs = inputs.resize_(args.batch_size, 1, 21, 21)
            inputs = inputs.float()
            if use_cuda:
                inputs = inputs.cuda().half()
            inputs = Variable(inputs)
            optimizer.zero_grad()
            dec = vae(inputs)
            ll = latent_loss(vae.z_mean, vae.z_sigma)
            loss = criterion(dec, inputs) + ll
            loss.backward()
            optimizer.step()
            epoch_loss += loss.data[0]

            clock.update(time.time() - end)
            end = time.time()

            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(trainloader.dataset),
                    100. * batch_idx / len(trainloader), loss.data[0]))

    clock.save(path='/home/ygx/libraries/mds/molecules/molecules/linear_vae')
Ejemplo n.º 3
0
def test(x, vae, vqvae_model, do_use_cuda=False, save_img_path=None):
    x_d = vae(x.contiguous().view(x.shape[0], -1))
    x_di = x_d.contiguous().view(x_d.shape[0], probs_size, dsize, dsize)
    xi = x.contiguous().view(x.shape[0], 1, dsize, dsize)
    dmll_loss = discretized_mix_logistic_loss(x_di,
                                              2 * xi - 1,
                                              nr_mix=nr_mix,
                                              use_cuda=do_use_cuda)
    kl_loss = kl_weight * latent_loss(vae.z_mean, vae.z_sigma)
    test_loss = dmll_loss + kl_loss
    return test_loss
Ejemplo n.º 4
0
def train(args):
    dataset = args.dataset
    if dataset == "yaleb":
        input_dim = 32256
        batch_size = 32
        z_dim = 100
        hidden = 300
        criterion = nn.BCELoss()
        max_epochs = 100

    if dataset == "adult":
        input_dim = 108
        batch_size = 64
        z_dim = 2
        hidden = 100
        criterion = nn.MSELoss()
        max_epochs = 30

    if dataset == "german":
        input_dim = 61
        batch_size = 64
        z_dim = 2
        hidden = 100
        criterion = nn.MSELoss()
        max_epochs = 30

    dataloader, dataloader_test = load_data(dataset, batch_size)

    encoder = Encoder(input_dim, hidden, hidden)
    decoder = Decoder(z_dim, hidden, input_dim)
    vae = VAE(encoder, decoder, hidden, z_dim)

    optimizer = optim.Adam(vae.parameters(), lr=0.00001)
    l = None
    ls = []
    for epoch in range(max_epochs):
        for i, data in enumerate(dataloader, 0):
            inputs, classes, _ = data
            optimizer.zero_grad()
            dec = vae(inputs)
            ll = latent_loss(vae.z_mean, vae.z_sigma)
            loss = criterion(dec, inputs) + ll
            loss.backward()
            optimizer.step()
            l = loss.data.item()
        ls.append(l)
        print(epoch, l)

    with open(PROJECT_DIR / f"models/{dataset}_vae", "wb") as f:
        torch.save(vae, f)
    plt.plot(ls)
    plt.show()
Ejemplo n.º 5
0
def train(epoch, model, optimizer, train_loader, do_checkpoint, do_use_cuda):
    latent_losses = []
    dmll_losses = []
    kl_weight = min(1.0, epoch * 1e-2 + .1)
    for batch_idx, (data, _) in enumerate(train_loader):
        start_time = time.time()
        if do_use_cuda:
            x = Variable(data, requires_grad=False).cuda()
        else:
            x = Variable(data, requires_grad=False)
        optimizer.zero_grad()
        x_d = vae(x.contiguous().view(x.shape[0], -1))
        x_di = x_d.contiguous().view(x_d.shape[0], probs_size, dsize, dsize)
        dmll_loss = discretized_mix_logistic_loss(x_di,
                                                  2 * x - 1,
                                                  nr_mix=nr_mix,
                                                  use_cuda=do_use_cuda)
        #x_di = x_d.contiguous().view(x_d.shape[0], 1, dsize, dsize)
        #dmll_loss = mse_loss(x_di, x)
        kl_loss = kl_weight * latent_loss(vae.z_mean, vae.z_sigma)
        loss = dmll_loss + kl_loss
        loss.backward()
        optimizer.step()
        latent_losses.append(kl_loss.cpu().data)
        dmll_losses.append(dmll_loss.cpu().data)

        if not batch_idx % 500:
            print 'Train Epoch: {} [{}/{} ({:.0f}%)]\tKL Loss: {} MSE Loss: {} Time: {}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / float(len(train_loader)),
                np.asarray(latent_losses).mean(0),
                np.asarray(dmll_losses).mean(0),
                time.time() - start_time)

    state = {
        'epoch': epoch,
        'state_dict': vae.state_dict(),
        'dmll_losses': np.asarray(dmll_losses).mean(0),
        'latent_losses': np.asarray(latent_losses).mean(0),
        'optimizer': optimizer.state_dict(),
    }
    return model, optimizer, state
Ejemplo n.º 6
0
def train(epoch, model, optimizer, train_loader, do_checkpoint, do_use_cuda):
    latent_losses = []
    mse_losses = []
    kl_weight = min(1.0, epoch * 1e-2)
    for batch_idx, (data, _) in enumerate(train_loader):
        start_time = time.time()
        if do_use_cuda:
            x = Variable(data, requires_grad=False).cuda()
        else:
            x = Variable(data, requires_grad=False)
        optimizer.zero_grad()
        dec = vae(x)
        kl = kl_weight * latent_loss(vae.z_mean, vae.z_sigma)
        mse_loss = criterion(dec, x)
        loss = mse_loss + kl
        loss.backward()
        optimizer.step()
        latent_losses.append(kl.cpu().data)
        mse_losses.append(mse_loss.cpu().data)

        if not batch_idx % 500:
            print 'Train Epoch: {} [{}/{} ({:.0f}%)]\tKL Loss: {} MSE Loss: {} Time: {}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / float(len(train_loader)),
                np.asarray(latent_losses).mean(0),
                np.asarray(mse_losses).mean(0),
                time.time() - start_time)

    state = {
        'epoch': epoch,
        'state_dict': vae.state_dict(),
        'mse_losses': np.asarray(mse_losses).mean(0),
        'latent_losses': np.asarray(latent_losses).mean(0),
        'optimizer': optimizer.state_dict(),
    }
    return model, optimizer, state
Ejemplo n.º 7
0
def main():
    use_cuda = args.use_cuda

    train_data = UnlabeledContact(data=args.data_dir)
    print('Number of samples: {}'.format(len(train_data)))
    trainloader = DataLoader(train_data, batch_size=args.batch_size)

    # Contact matrices are 21x21
    input_size = 441

    encoder = Encoder(input_size=input_size, latent_size=3)
    decoder = Decoder(latent_size=3, output_size=input_size)
    vae = VAE(encoder, decoder, use_cuda=use_cuda)
    criterion = nn.MSELoss()

    if use_cuda:
        encoder = encoder.cuda().half()
        decoder = decoder.cuda().half()
        vae = vae.cuda().half()
        criterion = criterion.cuda().half()

    optimizer = optim.SGD(vae.parameters(), lr=0.01)

    epoch_loss = 0
    total_loss = 0
    for epoch in range(100):
        for batch_idx, data in enumerate(trainloader):
            inputs = data['cont_matrix']
            inputs = inputs.resize_(args.batch_size, 1, 21, 21)
            inputs = inputs.float()
            if use_cuda:
                inputs = inputs.cuda().half()
            inputs = Variable(inputs)
            optimizer.zero_grad()
            dec = vae(inputs)
            ll = latent_loss(vae.z_mean, vae.z_sigma)
            loss = criterion(dec, inputs) + ll
            loss.backward()
            optimizer.step()
            epoch_loss += loss.data[0]

            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(trainloader.dataset),
                    100. * batch_idx / len(trainloader), loss.data[0]))

        if epoch < 10:
            # Get latent encoding
            latent_array = encoder(inputs).data[0].cpu().float().numpy()
            filename = 'latent_epoch' + str(epoch)
            np.save('./latent_saves/' + filename, latent_array)

            # Get reconstructed image
            reconstructed_array = vae(
                inputs).data[0].cpu().float().numpy().reshape(21, 21)
            recon_filename = 'reconstructed_epoch' + str(epoch)
            np.save('./reconstruct_saves/' + recon_filename,
                    reconstructed_array)

        if epoch % 10 == 0:
            torch.save(vae.state_dict(), args.save_path + 'epoch' + str(epoch))

            latent_array = encoder(inputs).data[0].cpu().float().numpy()
            filename = 'latent_epoch' + str(epoch)
            np.save('./latent_saves/' + filename, latent_array)

            reconstructed_array = vae(
                inputs).data[0].cpu().float().numpy().reshape(21, 21)
            recon_filename = 'reconstructed_epoch' + str(epoch)
            np.save('./reconstruct_saves/' + recon_filename,
                    reconstructed_array)
Ejemplo n.º 8
0
def test(x, vae, vqvae_model, do_use_cuda=False, save_img_path=None):
    dec = vae(x)
    kl = latent_loss(vae.z_mean, vae.z_sigma)
    loss = criterion(dec, x) + kl
    test_loss = loss.cpu().data.mean()
    return test_loss