def learning(learning_path, synapse): #potentials of output neurons potential_lists = [] for i in range(par.kSecondLayerNuerons_): potential_lists.append([]) #time series time_array = np.arange(1, par.kTime_+1, 1) layer2 = [] # creating the hidden layer of neurons for i in range(par.kSecondLayerNuerons_): a = neuron() layer2.append(a) for epoch in range(1): for wave_file in learning_path: #for wave_file in ["sounddata\F1\F1SYB01_が.wav"]: resemble_print(str(wave_file) + " " + str(epoch)) #音声データの読み込み splited_sig_array, samplerate = wav_split(str(wave_file)) resemble_print(str(wave_file)) splited_sig_array = remove_silence(splited_sig_array) print(len(splited_sig_array)) #スパイクの連結 #spike_train = wav_split2spike(splited_sig_array, samplerate) #spike_connected = np.array(connect_spike(spike_train)) #for spike_train in spike_connected: for signal in splited_sig_array: #Generating melspectrum f_centers, mel_spectrum = get_log_melspectrum(signal, samplerate) #Generating spike train spike_train = np.array(encode(np.log10(mel_spectrum))) #calculating threshold value for the image var_threshold = threshold(spike_train) # resemble_print var_threshold # synapse_act = np.zeros((par.kSecondLayerNuerons_,par.kFirstLayerNuerons_)) # var_threshold = 9 # resemble_print var_threshold # var_D = (var_threshold*3)*0.07 var_D = 0.15 * par.kScale_ for x in layer2: x.initial(var_threshold) #flag for lateral inhibition flag_spike = 0 img_win = 100 active_potential = [] for index1 in range(par.kSecondLayerNuerons_): active_potential.append(0) #Leaky integrate and fire neuron dynamics for time in time_array: for second_layer_position, second_layer_neuron in enumerate(layer2): active = [] if(second_layer_neuron.t_rest < time): second_layer_neuron.P = (second_layer_neuron.P + np.dot( synapse[second_layer_position], spike_train[:, time] ) ) #resemble_print("synapse : " + str(synapse[second_layer_position])) if(second_layer_neuron.P > par.kPrest_): second_layer_neuron.P -= var_D active_potential[second_layer_position] = second_layer_neuron.P potential_lists[second_layer_position].append(second_layer_neuron.P) # Lateral Inhibition if(flag_spike==0): max_potential = max(active_potential) if(max_potential > var_threshold): flag_spike = 1 winner_neuron = np.argmax(active_potential) img_win = winner_neuron resemble_print("winner is " + str(winner_neuron)) for s in range(par.kSecondLayerNuerons_): if(s != winner_neuron): layer2[s].P = par.kMinPotential_ #Check for spikes and update weights for second_layer_position, second_layer_neuron in enumerate(layer2): neuron_status = second_layer_neuron.check() if(neuron_status == 1): second_layer_neuron.t_rest = time + second_layer_neuron.t_ref second_layer_neuron.P = par.kPrest_ for first_layer_position in range(par.kFirstLayerNuerons_): #前シナプスの計算 for back_time in range(-2, par.kTimeBack_-1, -1): #-2 → -20 if 0 <= time + back_time < par.kTime_ + 1: if spike_train[first_layer_position][time + back_time] == 1: # resemble_print "weight change by" + str(update(synapse[j][h], rl(t1))) synapse[second_layer_position][first_layer_position] = update( synapse[second_layer_position][first_layer_position], rl(back_time) ) resemble_print("back : " + str(second_layer_position) + "-" + str(first_layer_position) + " : " + str(synapse[second_layer_position][first_layer_position])) #後シナプスの計算 for fore_time in range(2, par.kTimeFore_+1, 1): # 2 → 20 if 0 <= time + fore_time<par.kTime_+1: if spike_train[first_layer_position][time + fore_time] == 1: # resemble_print "weight change by" + str(update(synapse[j][h], rl(t1))) synapse[second_layer_position][first_layer_position] = update( synapse[second_layer_position][first_layer_position], rl(fore_time) ) resemble_print("fron : " + str(second_layer_position) + "-" + str(first_layer_position) + " : " + str(synapse[second_layer_position][first_layer_position])) if(img_win!=100): for first_layer_position in range(par.kFirstLayerNuerons_): if sum(spike_train[first_layer_position]) == 0: synapse[img_win][first_layer_position] -= 0.06 * par.kScale_ if(synapse[img_win][first_layer_position]<par.kMinWait_): synapse[img_win][first_layer_position] = par.kMinWait_ return potential_lists, synapse, layer2
for j in range(par.m): synapse[i][j] = random.uniform(0, 0.4 * par.scale) for k in range(par.epoch): for i in range(322, 323): print i, " ", k img = cv2.imread("mnist1/" + str(i) + ".png", 0) #Convolving image with receptive field pot = rf(img) #Generating spike train train = np.array(encode(pot)) #calculating threshold value for the image var_threshold = threshold(train) # print var_threshold # synapse_act = np.zeros((par.n,par.m)) # var_threshold = 9 # print var_threshold # var_D = (var_threshold*3)*0.07 var_D = 0.15 * par.scale for x in layer2: x.initial(var_threshold) #flag for lateral inhibition f_spike = 0
def learning(learning_or_classify): #1 = learning, 0 = classify #learning_or_classify = 0 print learning_or_classify if(learning_or_classify == 0): print "Starting classify..." elif(learning_or_classify == 1): print "Starting learning..." else: print "Error in argument, quitting" quit() if(learning_or_classify == 0): par.epoch = 1 #potentials of output neurons pot_arrays = [] pot_arrays.append([]) #because 0th layer do not require neuron model for i in range(1,par.num_layers): pot_arrays_this = [] for j in range(0,par.num_layer_neurons[i]): pot_arrays_this.append([]) pot_arrays.append(pot_arrays_this) print "created potential arrays for each layer..." Pth_array = [] Pth_array.append([]) #because 0th layer do not require neuron model for i in range(1,par.num_layers): Pth_array_this = [] for j in range(0,par.num_layer_neurons[i]): Pth_array_this.append([]) Pth_array.append(Pth_array_this) print "created potential threshold arrays for each layer..." train_all = [] for i in range(0,par.num_layers): train_this = [] for j in range(0,par.num_layer_neurons[i]): train_this.append([]) train_all.append(train_this) print "created spike trains for each layer..." #synapse matrix initialization synapse = [] #synapse[i] is the matrix for weights from layer i to layer i+1, assuming index from 0 for i in range(0,par.num_layers-1): synapse_this = np.zeros((par.num_layer_neurons[i+1],par.num_layer_neurons[i])) synapse.append(synapse_this) if(learning_or_classify == 1): for layer in range(0,par.num_layers-1): for i in range(par.num_layer_neurons[layer+1]): for j in range(par.num_layer_neurons[layer]): synapse[layer][i][j] = random.uniform(0,0.4*par.scale) else: for layer in range(0,par.num_layers-1): for i in range(par.num_layer_neurons[layer+1]): #for j in range(par.num_layer_neurons[layer]): filename = "weights/layer_"+str(layer)+"_neuron_"+str(i)+".dat" with open(filename,"rb") as f: synapse[layer][i] = pickle.load(f) print "created synapse matrices for each layer..." #this contains neurons of all layers except first layers = [] #layers[i] is the list of neurons from layer i, assuming index from 0 layer_this = [] layers.append(layer_this) #0th layer is empty as input layer do not require neuron model #time series time = np.arange(1, par.T+1, 1) # creating each layer of neurons for i in range(1,par.num_layers): layer_this = [] for i in range(par.num_layer_neurons[i]): a = neuron() layer_this.append(a) layers.append(layer_this) print "created neuron for each layer..." for k in range(par.epoch): for i in range(1,7): print "Epoch: ",str(k),", Image: ", str(i) if(learning_or_classify == 1): img = cv2.imread("training_images/" + str(i) + ".png", 0) else: img = cv2.imread("training_images/" + str(i) + ".png", 0) #Convolving image with receptive field pot = rf(img) #print pot #training layers i and i+1, assuming 0 indexing, thus n layers require n-1 pairs of training for layer in range(0,par.num_layers-1): print "Layer: ", str(layer) #Generating spike train when the first layer #else take the spike train from last layer if(layer == 0): train_all[layer] = np.array(encode(pot)) train = np.array(encode(pot)) else: train_all[layer] = np.asarray(train_this_layer) train = np.array(np.asarray(train_this_layer)) #print train[1] #calculating threshold value for the image var_threshold = threshold(train) #print "var_threshold is ", str(var_threshold) # print var_threshold # synapse_act = np.zeros((par.n,par.m)) # var_threshold = 9 # print var_threshold # var_D = (var_threshold*3)*0.07 var_D = 0.15*par.scale for x in layers[layer+1]: x.initial(var_threshold) #flag for lateral inhibition f_spike = 0 img_win = 100 active_pot = [] train_this_layer = [] for index1 in range(par.num_layer_neurons[layer+1]): active_pot.append(0) train_this_layer.append([]) #print synapse[layer].shape, train.shape #Leaky integrate and fire neuron dynamics for t in time: #print "Time: ", str(t) for j, x in enumerate(layers[layer+1]): active = [] if(x.t_rest<t): x.P = x.P + np.dot(synapse[layer][j], train[:,t]) if(x.P>par.Prest): x.P -= var_D active_pot[j] = x.P #pot_arrays[layer+1][j].append(x.P) #Pth_array[layer+1][j].append(x.Pth) # Lateral Inhibition # Occurs in the training of second last and last layer #if(f_spike==0 and layer == par.num_layers - 2 and learning_or_classify == 1): if(f_spike==0 ): high_pot = max(active_pot) if(high_pot>var_threshold): f_spike = 1 winner = np.argmax(active_pot) img_win = winner #print "winner is " + str(winner) for s in range(par.num_layer_neurons[layer+1]): if(s!=winner): layers[layer+1][s].P = par.Pmin #Check for spikes and update weights for j,x in enumerate(layers[layer+1]): pot_arrays[layer+1][j].append(x.P) Pth_array[layer+1][j].append(x.Pth) s = x.check() train_this_layer[j].append(s) if(learning_or_classify == 1): if(s==1): x.t_rest = t + x.t_ref x.P = par.Prest for h in range(par.num_layer_neurons[layer]): for t1 in range(-2,par.t_back-1, -1): if 0<=t+t1<par.T+1: if train[h][t+t1] == 1: # print "weight change by" + str(update(synapse[j][h], rl(t1))) synapse[layer][j][h] = update(synapse[layer][j][h], rl(t1)) for t1 in range(2,par.t_fore+1, 1): if 0<=t+t1<par.T+1: if train[h][t+t1] == 1: # print "weight change by" + str(update(synapse[j][h], rl(t1))) synapse[layer][j][h] = update(synapse[layer][j][h], rl(t1)) for j in range(par.num_layer_neurons[layer+1]): train_this_layer[j].append(0) #if(img_win!=100 and layer == par.num_layers - 2 ): if(img_win!=100 ): for p in range(par.num_layer_neurons[layer]): if sum(train[p])==0: synapse[layer][img_win][p] -= 0.06*par.scale if(synapse[layer][img_win][p]<par.w_min): synapse[layer][img_win][p] = par.w_min #print train_this_layer #print synapse[0][0] train_all[par.num_layers-1] = np.asarray(train_this_layer) results_each_layer = 1 if(results_each_layer): for layer in range(par.num_layers-1,par.num_layers): for i in range(par.num_layer_neurons[layer]): print "Layer"+ str(layer) + ", Neuron"+str(i+1)+": "+str(sum(train_all[layer][i])) #print classification results # if(learning_or_classify == 0): plot = 0 if (plot == 1): for layer in range(par.num_layers-1,par.num_layers): ttt = np.arange(0,len(pot_arrays[layer][0]),1) #plotting for i in range(par.num_layer_neurons[layer]): axes = plt.gca() axes.set_ylim([-20,50]) plt.plot(ttt,Pth_array[layer][i], 'r' ) plt.plot(ttt,pot_arrays[layer][i]) plt.show() #Reconstructing weights to analyse training reconst = 1 if(learning_or_classify != 1): reconst = 0 if(reconst == 1): for layer in range(par.num_layers-1): siz_x = int(par.num_layer_neurons[layer]**(.5)) siz_y = siz_x for i in range(par.num_layer_neurons[layer+1]): reconst_weights(synapse[layer][i],i+1,layer,siz_x,siz_y) #Dumping trained weights of last layer to file dump = 1 if(learning_or_classify != 1): dump = 0 if(dump == 1): for layer in range(par.num_layers-1): for i in range(par.num_layer_neurons[layer+1]): filename = "weights/"+"layer_"+str(layer)+"_neuron_"+str(i)+".dat" with open(filename,'wb') as f: #f.write(str(synapse[layer][i])) pickle.dump(synapse[layer][i],f)
synapse[i][j] = random.uniform(0, 0.4 * par.kScale_) for epoch in range(par.kEpoch_): for image_num in range(3221, 3222): print(str(image_num) + " " + str(epoch)) img = cv2.imread("mnist1/" + str(image_num) + ".png", 0) print("mnist1/" + str(image_num) + ".png") #Convolving image with receptive field pot = rf(img) #Generating spike train spike_train = np.array(encode(pot)) #calculating threshold value for the image var_threshold = threshold(spike_train) # print var_threshold # synapse_act = np.zeros((par.kSecondLayerNuerons_,par.kFirstLayerNuerons_)) # var_threshold = 9 # print var_threshold # var_D = (var_threshold*3)*0.07 var_D = 0.15 * par.kScale_ for x in layer2: x.initial(var_threshold) #flag for lateral inhibition flag_spike = 0
def winner_take_all(synapse, wave_file): #potentials of output neurons potential_lists = [] for i in range(par.kSecondLayerNuerons_): potential_lists.append([]) #time series time_array = np.arange(1, par.kTime_ + 1, 1) layer2 = [] # creating the hidden layer of neurons for i in range(par.kSecondLayerNuerons_): a = neuron() layer2.append(a) neuron_spiked = np.zeros(par.kSecondLayerNuerons_) for epoch in range(1): resemble_print(str(wave_file) + " " + str(epoch)) #音声データの読み込み #splited_sig_array, samplerate = wav_split(str(wave_file)) #resemble_print(wave_file) splited_sig_array, samplerate = wav_split(str(wave_file)) resemble_print(str(wave_file)) #スパイクの連結 #spike_train = wav_split2spike(splited_sig_array, samplerate) #spike_connected = np.array(connect_spike(spike_train)) #for spike_train in spike_connected: for signal in splited_sig_array: #Generating melspectrum f_centers, mel_spectrum = get_log_melspectrum(signal, samplerate) #Generating spike train spike_train = np.array(encode(np.log10(mel_spectrum))) #calculating threshold value for the image var_threshold = threshold(spike_train) # resemble_print var_threshold # synapse_act = np.zeros((par.kSecondLayerNuerons_,par.kFirstLayerNuerons_)) # var_threshold = 9 # resemble_print var_threshold # var_D = (var_threshold*3)*0.07 var_D = 0.15 * par.kScale_ for x in layer2: x.initial(var_threshold) #flag for lateral inhibition flag_spike = 0 img_win = 100 active_potential = [] for index1 in range(par.kSecondLayerNuerons_): active_potential.append(0) #Leaky integrate and fire neuron dynamics for time in time_array: for second_layer_position, second_layer_neuron in enumerate( layer2): active = [] if (second_layer_neuron.t_rest < time): second_layer_neuron.P = ( second_layer_neuron.P + np.dot(synapse[second_layer_position], spike_train[:, time])) #resemble_print("synapse : " + str(synapse[second_layer_position])) if (second_layer_neuron.P > par.kPrest_): second_layer_neuron.P -= var_D active_potential[ second_layer_position] = second_layer_neuron.P potential_lists[second_layer_position].append( second_layer_neuron.P) # Lateral Inhibition if (flag_spike == 0): max_potential = max(active_potential) if (max_potential > var_threshold): flag_spike = 1 winner_neuron = np.argmax(active_potential) img_win = winner_neuron neuron_spiked[winner_neuron] += 1 resemble_print("winner is " + str(winner_neuron)) for s in range(par.kSecondLayerNuerons_): if (s != winner_neuron): layer2[s].P = par.kMinPotential_ #勝ったニューロンの特定 resemble_print(neuron_spiked) return neuron_spiked