def test_doit(self):
        v1, v2, zero, one, nabla, C, vn1, vn2, x, y, z = self._get_vars()

        assert VecDot(vn1, vn2).doit() - vn1.dot(vn2) == 0
        assert VecDot(nabla, vn2).doit() - divergence(vn2) == 0
        assert isinstance(VecDot(v1, v1).doit(), VecPow)
        assert isinstance(VecDot(vn1, vn1).doit(), Integer)

        expr = VecDot(v1, v2.norm).doit()
        assert tuple(type(a) for a in expr.args) in [(VectorSymbol, VecMul),
                                                     (VecMul, VectorSymbol)]

        expr = VecDot(v1, v2.norm).doit(deep=False)
        assert tuple(type(a) for a in expr.args) in [(VectorSymbol, Normalize),
                                                     (Normalize, VectorSymbol)]

        expr = VecDot(v1, VecAdd(vn2, vn1)).doit(deep=False)
        assert tuple(type(a) for a in expr.args) in [(VectorSymbol, VecAdd),
                                                     (VecAdd, VectorSymbol)]
        expr = VecDot(v1, VecAdd(vn2, vn1)).doit()
        assert tuple(type(a) for a in expr.args) in [(VectorSymbol, VectorAdd),
                                                     (VectorAdd, VectorSymbol)]

        expr = VecDot(vn1, vn2 + vn1).doit()
        assert expr == (x + 2 * y + 3 * z + 14)
    def test_doit(self):
        v1, v2, zero, one, nabla, C, vn1, vn2, x, y, z = self._get_vars()

        assert isinstance(Advection(v1, v2).doit(), Advection)

        # identity test
        a = C.x * C.i + C.y * C.j + C.z * C.k
        b = C.y * C.z * C.i + C.x * C.z * C.j + C.x * C.y * C.k
        assert self._check_args((nabla ^ (a ^ b)).doit(),
                                (divergence(b) * a) + Advection(b, a).doit() -
                                (divergence(a) * b) - Advection(a, b).doit())

        assert isinstance(
            Advection(VecAdd(a, b), C.x).doit(deep=False), Advection)
        assert isinstance(
            Advection(VecAdd(a, b), VecAdd(a, b)).doit(deep=False), Advection)
    def test_doit(self):
        v1, v2, zero, one, nabla, C, vn1, vn2 = self._get_vars()

        assert Magnitude(VecAdd(v1, zero, evaluate=False)).doit() == v1.mag
        assert Magnitude(vn1).doit() == sqrt(14)
        assert Magnitude(vn2).doit() == sqrt(x**2 + y**2 + z**2)
        assert isinstance(
            Magnitude(VecCross(vn1, vn2)).doit(deep=False), Magnitude)
        assert isinstance(Magnitude(VecCross(vn1, vn2)).doit(), Pow)
Ejemplo n.º 4
0
def collect_cross_dot(expr, pattern=VecCross, first_arg=True):
    """ Collect additive dot/cross products with common arguments.

    Example: expr = (a ^ b) + (a ^ c) + (b ^ c)
    collect_cross_dot(expr)
        (a ^ (b + c)) + (b ^ c)
    collect_cross_dot(expr, VecCross, False)
        (a ^ b) + ((a + b) ^ c)

    Parameters
    ----------
        expr : the expression to process
        pattern : the class to look for. Can be VecCross or VecDot.
        first_arg : Boolean, default to True. If True, look for common first 
            arguments in the instances of the class `pattern`. Otherwise, look 
            for common second arguments.
    """
    if not issubclass(pattern, DotCross):
        return expr

    copy = expr
    subs_list = []
    for arg in preorder_traversal(expr):
        # we are interested to the args of instance pattern.func in the
        # current tree level
        found = [a for a in arg.args if isinstance(a, pattern)]
        terms = _terms_with_commong_args(found, first_arg)

        if first_arg:
            get_v = lambda t: pattern(t[0].args[0],
                                      VecAdd(*[a.args[1] for a in t]))
        else:
            get_v = lambda t: pattern(VecAdd(*[a.args[0]
                                               for a in t]), t[0].args[1])

        if terms:
            for t in terms:
                subs_list.append({VecAdd(*t): get_v(t)})
    for s in subs_list:
        expr = expr.subs(s)

    if copy == expr:
        return expr
    return collect_cross_dot(expr, pattern, first_arg)
 def test_doit(self):
     v1, v2, zero, one, nabla, C, vn1, vn2 = self._get_vars()
     
     # return a VecMul object (a fraction, vector/magnitude)
     assert isinstance(Normalize(v1).doit(), VecMul)
     assert isinstance(Normalize(one).doit(), VecMul)
     assert isinstance(Normalize(zero).doit(), VectorZero)
     # symbolic Vector
     assert Normalize(vn1).doit() - vn1.normalize() == Vector.zero
     assert Normalize(vn2).doit() - vn2.normalize() == Vector.zero
     assert Normalize(VecAdd(vn1, vn2)).doit() - (vn1 + vn2).normalize() == Vector.zero
     assert isinstance(Normalize(VecAdd(vn1, vn2)).doit(deep=False), VecMul)
 
     # test to check if the result is a vector
     assert Normalize(v1).doit().is_Vector
     assert Normalize(v1 + v2).doit().is_Vector
     assert Normalize(one).doit().is_Vector
     assert Normalize(zero).doit().is_Vector
     assert Normalize(vn1).doit().is_Vector
     assert Normalize(VecAdd(vn1, vn2)).doit().is_Vector
     assert Normalize(VecAdd(vn1, vn2)).doit(deep=False).is_Vector
    def test_creation(self):
        v1, v2, zero, one, nabla, C, vn1, vn2, x, y, z = self._get_vars()

        assert isinstance(VectorSymbol("v1"), VectorSymbol)
        assert isinstance(VectorSymbol(Symbol("x")), VectorSymbol)
        assert VectorSymbol(v1) == v1

        def func(s):
            with self.assertRaises(TypeError):
                VectorSymbol(s)

        func(x + y)
        func(VecAdd(v1, v2))
        func(Symbol("x") + Symbol("y"))
    def test_is_vector(self):
        v1, v2, zero, one, nabla, C, vn1, vn2, x, y, z = self._get_vars()

        assert VecAdd(v1, v2).is_Vector
        # assert not VecAdd(v1, v2).is_Vector_Scalar
        assert not VecAdd(v1.mag, v2.mag).is_Vector
        # assert VecAdd(v1.mag, v2.mag).is_Vector_Scalar
        # with dot product and nested mul/dot
        assert not VecAdd(2, v2 & v1).is_Vector
        # assert VecAdd(2, v2 & v1).is_Vector_Scalar
        assert not VecAdd(2, VecMul(x, v2 & v1)).is_Vector
        # assert VecAdd(2,  VecMul(x, v2 & v1)).is_Vector_Scalar
        # with cross product and nested mul/cross
        assert VecAdd(v1, v2 ^ v1).is_Vector
        # assert not VecAdd(v1, v2 ^ v1).is_Vector_Scalar
        assert VecAdd(v1, VecMul(x, v2 ^ v1)).is_Vector
    def test_doit(self):
        v1, v2, zero, one, nabla, C, vn1, vn2, x, y, z = self._get_vars()

        expr = VecAdd(v1, v2, v1, evaluate=False)
        assert not self._check_args(expr, VecAdd(VecMul(2, v1), v2))
        assert self._check_args(expr.doit(), VecAdd(VecMul(2, v1), v2))

        expr = VecAdd(v1, v2, VecAdd(v1, v2, evaluate=False), evaluate=False)
        assert not self._check_args(expr, VecAdd(VecMul(2, v1), VecMul(2, v2)))
        assert self._check_args(expr.doit(),
                                VecAdd(VecMul(2, v1), VecMul(2, v2)))

        r = vn1 + vn2
        assert VecAdd(vn1, vn2).doit() == r

        expr = VecAdd(v1.mag, VecDot(vn1, vn2))
        assert self._check_args(expr.doit(deep=False), expr)
        assert self._check_args(expr.doit(), VecAdd(v1.mag, vn1 & vn2))

        # test the rule default_sort_key used into VecAdd.doit
        assert VecAdd(v1, one, v2).doit().args == (one, v1, v2)
        assert VecAdd(v1, VecCross(v1, v2),
                      one).doit().args == (VecCross(v1, v2), one, v1)
        # test the rule merge_explicit used into VecAdd.doit
        assert VecAdd(vn1, vn2).doit() == vn1 + vn2
        assert self._check_args(
            VecAdd(vn1, vn2, one).doit(), VecAdd(one, vn1 + vn2))
    def test_flatten(self):
        v1, v2, zero, one, nabla, C, vn1, vn2, x, y, z = self._get_vars()

        # test sympy.strategies.flatten applied to VecAdd
        assert self._check_args(VecAdd(v1, VecAdd(v2, one)),
                                VecAdd(one, v1, v2))
        assert self._check_args(VecAdd(v1, VecAdd(one), VecAdd(zero, v2)),
                                VecAdd(one, v1, v2))
        assert self._check_args(VecAdd(v1, VecAdd(one, VecAdd(zero, v2))),
                                VecAdd(one, v1, v2))
        assert self._check_args(
            VecAdd(v1 ^ v2, VecAdd(one, VecAdd(2 * v1, (v2 & v1) * one))),
            VecAdd(v1 ^ v2, one, 2 * v1, (v2 & v1) * one))
 def func(args, **kwargs):
     with self.assertRaises(TypeError) as context:
         VecAdd(*args, **kwargs)
     self.assertTrue(
         'Mix of Vector and Scalar symbols' in str(context.exception))
    def test_creation(self):
        v1, v2, zero, one, nabla, C, vn1, vn2, x, y, z = self._get_vars()

        # no args
        assert VecAdd() == VectorZero()
        # 1 arg
        assert VecAdd(v1.mag) == v1.mag
        assert VecAdd(v2) == v2
        assert VecAdd(zero) == zero
        assert VecAdd(0) == S.Zero
        # one argument is 0 or VectorZero()
        assert VecAdd(one, zero) == one
        assert VecAdd(VectorOne(), VectorZero()) == one
        assert VecAdd(0, x) == x
        assert VecAdd(zero, v1) == v1
        assert VecAdd(v1.mag, 0) == v1.mag
        # no VectorExpr in arguments -> return Add
        assert isinstance(VecAdd(2, x, y), Add)
        # VectorExpr in args -> return VecAdd
        assert isinstance(VecAdd(v1, v2), VecAdd)
        assert isinstance(VecAdd(vn1, vn2), VecAdd)
        assert isinstance(VecAdd(v1.mag, v2.mag), VecAdd)
        assert isinstance(VecAdd(1, v2.mag), VecAdd)
        assert isinstance(VecAdd(one, v2 ^ v1), VecAdd)
        assert isinstance(VecAdd(1, v2 & v1), VecAdd)
        assert isinstance(VecAdd(one, v1, v2), VecAdd)
        assert isinstance(VecAdd(v1, v1), VecMul)
        assert isinstance(VecAdd(v1, v1, evaluate=False), VecAdd)
Ejemplo n.º 12
0
def collect(expr, match):
    """ Implement a custom collecting algorithm to collect dot and cross 
    products. There is a noticeable difference with expr.collect: given the
    following expression:
                expr = a * t + b * t + c * t**2 + d * t**3 + e * t**3
                expr.collect(t)
                    t**3 * (d + e) + t**2 * c + t * (a + b)
    Whereas:
                collect(expr, t)
                    t * (a + b + t * c + t**2 * d + t**2 * e)
                collect(expr, t**2)
                    a * t + b * t + t**2 * (c + t * d + t * e)
    
    Parameters
    ----------
        expr : the expression to process
        match : the pattern to collect. If match is not an instance of VecDot,
                VecCross or VecPow, standard expr.collect(match) will be used.
    """
    # the method expr.collect doesn't know how to treat cross and dot products.
    # Since dot-product is a scalar, it can also be raised to a power. We need
    # to select which algorithm to run.
    if not isinstance(match, (VecDot, VecCross, VecPow)):
        return expr.collect(match)

    # extract the pattern and exponent from the power term
    pattern = match
    n = 1
    if isinstance(match, VecPow):
        pattern = match.base
        n = match.exp

    if not expr.has(pattern):
        return expr

    if not isinstance(expr, VecAdd):
        return expr

    collect = []
    not_collect = []
    for arg in expr.args:
        if not arg.has(pattern):
            not_collect.append(arg)
        else:
            p = [
                a for a in arg.args
                if isinstance(a, VecPow) and isinstance(a.base, pattern.func)
            ]
            if p:
                # vecpow(pattern, exp)
                if p[0].exp >= n:
                    collect.append(arg / match)
                else:
                    not_collect.append(arg)
            else:
                if n == 1:
                    if arg != match:
                        term = arg.func(*[a for a in arg.args if a != match])
                        collect.append(term)
                    elif match.is_Vector:
                        collect.append(1)
                    else:
                        # TODO. need to test this!!!
                        collect.append(VectorOne())

                else:
                    not_collect.append(arg)

    return VecAdd(VecMul(match, VecAdd(*collect)), *not_collect)
Ejemplo n.º 13
0
def collect_const(expr, *vars, **kwargs):
    """ This is the very same code of sympy.simplify.radsimp.py collect_const,
    with modification: the original method used Mul._from_args
    and Add._from_args, which do not call a post-processor, hence I obtained the
    wrong result. Here, I use VecAdd, VecMul...
    """
    if not expr.is_Add:
        return expr

    recurse = False
    Numbers = kwargs.get('Numbers', True)

    if not vars:
        recurse = True
        vars = set()
        for a in expr.args:
            for m in Mul.make_args(a):
                if m.is_number:
                    vars.add(m)
    else:
        vars = sympify(vars)
    if not Numbers:
        vars = [v for v in vars if not v.is_Number]

    vars = list(ordered(vars))
    for v in vars:
        terms = defaultdict(list)
        Fv = Factors(v)
        for m in Add.make_args(expr):
            f = Factors(m)
            q, r = f.div(Fv)
            if r.is_one:
                # only accept this as a true factor if
                # it didn't change an exponent from an Integer
                # to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
                # -- we aren't looking for this sort of change
                fwas = f.factors.copy()
                fnow = q.factors
                if not any(k in fwas and fwas[k].is_Integer
                           and not fnow[k].is_Integer for k in fnow):
                    terms[v].append(q.as_expr())
                    continue
            terms[S.One].append(m)

        args = []
        hit = False
        uneval = False
        for k in ordered(terms):
            v = terms[k]
            if k is S.One:
                args.extend(v)
                continue

            if len(v) > 1:
                v = Add(*v)
                hit = True
                if recurse and v != expr:
                    vars.append(v)
            else:
                v = v[0]

            # be careful not to let uneval become True unless
            # it must be because it's going to be more expensive
            # to rebuild the expression as an unevaluated one
            if Numbers and k.is_Number and v.is_Add:
                # args.append(_keep_coeff(k, v, sign=True))
                args.append(VecMul(*[k, v], evaluate=False))
                uneval = True
            else:
                args.append(k * v)

        if hit:
            if uneval:
                # expr = Add(*args)
                expr = VecAdd(*args, evaluate=False)
            else:
                # expr = Add(*args)
                expr = VecAdd(*args)
            if not expr.is_Add:
                break

    return expr
Ejemplo n.º 14
0
def find_bac_cab(expr):
    """ Given a vector expression, find the terms satisfying the pattern:
                B * (A & C) - C * (A & B)
    where & is the dot product. The list is ordered in such a way that 
    nested matches comes first (similarly to scanning the expression tree from 
    bottom to top).
    """
    def _check_pairs(terms):
        # c1 = Mul(*[a for a in terms[0].args if not hasattr(a, "is_Vector_Scalar")])
        # c2 = Mul(*[a for a in terms[1].args if not hasattr(a, "is_Vector_Scalar")])
        c1 = Mul(*[
            a for a in terms[0].args if not isinstance(a, (Vector, VectorExpr))
        ])
        c2 = Mul(*[
            a for a in terms[1].args if not isinstance(a, (Vector, VectorExpr))
        ])
        n1, _ = c1.as_coeff_mul()
        n2, _ = c2.as_coeff_mul()
        if n1 * n2 > 0:
            # opposite sign
            return False
        if Abs(c1) != Abs(c2):
            return False
        # v1 = [a for a in terms[0].args if (hasattr(a, "is_Vector_Scalar") and a.is_Vector)][0]
        # v2 = [a for a in terms[1].args if (hasattr(a, "is_Vector_Scalar") and a.is_Vector)][0]
        v1 = [
            a for a in terms[0].args
            if (isinstance(a, (Vector, VectorExpr)) and a.is_Vector)
        ][0]
        v2 = [
            a for a in terms[1].args
            if (isinstance(a, (Vector, VectorExpr)) and a.is_Vector)
        ][0]
        if v1 == v2:
            return False
        dot1 = [a for a in terms[0].args if isinstance(a, VecDot)][0]
        dot2 = [a for a in terms[1].args if isinstance(a, VecDot)][0]
        if not ((v1 in dot2.args) and (v2 in dot1.args)):
            return False
        v = list(set(dot1.args).intersection(set(dot2.args)))[0]
        if v == v1 or v == v2:
            return False
        return True

    def _check(arg):
        if (isinstance(arg, VecMul) and any([a.is_Vector for a in arg.args])
                and any([isinstance(a, VecDot) for a in arg.args])):
            return True
        return False

    found = set()
    for arg in preorder_traversal(expr):
        possible_args = list(filter(_check, arg.args))
        # print("possible_args", possible_args)
        # for p in possible_args:
        #     print("\t", p.func, p.is_Vector, p)
        # # possible_args = list(arg.find(A * (B & C)))
        # # possible_args = list(filter(lambda x: isinstance(x, VecMul), possible_args))
        if len(possible_args) > 1:
            combs = list(combinations(possible_args, 2))
            # print("COMBINATIONS", combs)
            for c in combs:
                # print("\tC", c)
                # print("\n\t\t".join(str(a.func) + ", " + str(a.is_Vector) + ", " + str(a) for a in c))
                if _check_pairs(c):
                    # print("\t\t proceeding")
                    found.add(VecAdd(*c))
    found = list(ordered(list(found)))
    return found