Ejemplo n.º 1
0
"""
trimesh to vedo interoperability
"""
# Install trimesh with:
# sudo apt install python3-rtree
# pip install rtree shapely
# conda install trimesh

import trimesh
import vedo
from vedo import trimesh2vtk, vtk2trimesh

url = 'https://raw.githubusercontent.com/mikedh/trimesh/master/models/'
filename = vedo.download(url + 'machinist.XAML')

mesh = trimesh.load(filename)

vedo.show(mesh)  # vedo visualizer (conversion is on the fly)

# explicit conversion
vmesh = trimesh2vtk(mesh)  # returns a vedo.Mesh(vtkActor) object
trimsh_reconverted = vtk2trimesh(vmesh)

trimsh_reconverted.show()  # this is the trimesh built-in visualizer
Ejemplo n.º 2
0
#g = Graph(layout='2d', zrange=7)
g = DirectedGraph(layout='cone')
#g = DirectedGraph(layout='circular3d', height=1, radius=1.5)
#g = DirectedGraph(layout='force')

# Vertex generation is automatic,
#  add a child to vertex0, so that now vertex1 exists
g.addChild(0, edgeLabel="Mother giving birth\nto her little baby cell")
g.addChild(1)
g.addChild(1)
g.addChild(2)
g.addChild(2)
g.addChild(2)
g.addChild(3)
g.addChild(3, edgeLabel="It's a male!")
g.addChild(4)
g.addChild(4)
for i in range(7):
    g.addChild(5, nodeLabel="cell5_" + str(i))
g.addChild(7)
g.addChild(7)
g.addChild(7)

g.build()  # optimize layout

g.unpack(0).color('dg').lineWidth(
    3)  #0=graph, 1=vertexLabels, 2=edgeLabels, 3=arrows
g.unpack(2).color('dr')

show(g, __doc__, axes=9, elevation=-40)
Ejemplo n.º 3
0
"""Share the same color map
across different meshes
"""
from vedo import load, show, datadir


#####################################
man1 = load(datadir+"man.vtk")
scals = man1.points()[:, 2] * 5 + 27  # pick z coordinates [18->34]

man1.cmap("rainbow", scals, vmin=18, vmax=44)

#####################################
man2 = load(datadir+"man.vtk")
scals = man2.points()[:, 2] * 5 + 37  # pick z coordinates [28->44]

man2.cmap("rainbow", scals, vmin=18, vmax=44).addScalarBar()

show([(man1, __doc__), man2], N=2, elevation=-40, axes=11)
Ejemplo n.º 4
0
# test on a sphere mesh
mesh = trimesh.creation.icosphere()

# create some rays
ray_origins = np.array([[0, 0, -3], [1, 2, -3]])
ray_directions = np.array([[0, 0, 1], [0, -1, 1]])

# run the mesh-ray query
locations, index_ray, index_tri = mesh.ray.intersects_location(
    ray_origins=ray_origins, ray_directions=ray_directions)
locs = trimesh.points.PointCloud(locations)

# stack rays into line segments for visualization as Path3D
ray_visualize = trimesh.load_path(
    np.hstack((ray_origins, ray_origins + ray_directions)).reshape(-1, 2, 3))

print("The rays hit the mesh at coordinates:\n", locations)
print("The rays with index: {} hit triangles stored at mesh.faces[{}]".format(
    index_ray, index_tri))

# stack rays into line segments for visualization as Path3D
ray_visualize = trimesh.load_path(
    np.hstack(
        (ray_origins, ray_origins + ray_directions * 5.0)).reshape(-1, 2, 3))

# make mesh white-ish
mesh.visual.face_colors = [200, 200, 250, 100]
mesh.visual.face_colors[index_tri] = [255, 0, 0, 255]

show(mesh, ray_visualize, locs, axes=1)
Ejemplo n.º 5
0
"""A simple scatter plot"""
from vedo import show
from vedo.pyplot import plot
import numpy as np

x = np.random.randn(100) + 10
y = np.random.randn(100) * 20

plt = plot(
    x,
    y,
    lw=0,
    xtitle="variable x",
    ytitle="variable y",
    aspect=4 / 3,  # aspect ratio
    marker="*",  # marker style
    mc="dr",  # marker color
    axes=True,
)

# show Assembly object and lock interaction to 2d:
# (can zoom in a region w/ mouse, press r to reset)
show(plt, __doc__, zoom=1.2, viewup='2d').close()
Ejemplo n.º 6
0
               sin(state[2]) * cosa + M2 * L2 * state[3] * state[3] * sina -
               (M1 + M2) * G * sin(state[0])) / den1
    dydx[2] = state[3]
    den2 = (L2 / L1) * den1
    dydx[3] = (-M2 * L2 * state[3] * state[3] * sina * cosa +
               (M1 + M2) * G * sin(state[0]) * cosa -
               (M1 + M2) * L1 * state[1] * state[1] * sina -
               (M1 + M2) * G * sin(state[2])) / den2
    return dydx


t = np.arange(0.0, 10.0, dt)
state = np.radians([th1, w1, th2, w2])
y = integrate.odeint(derivs, state, t)

P1 = np.dstack([L1 * sin(y[:, 0]), -L1 * cos(y[:, 0])]).squeeze()
P2 = P1 + np.dstack([L2 * sin(y[:, 2]), -L2 * cos(y[:, 2])]).squeeze()

ax = Axes(xrange=(-2, 2), yrange=(-2, 1), htitle=__doc__)
pb = ProgressBar(0, len(t), c="b")
for i in pb.range():
    j = max(i - 5, 0)
    k = max(i - 10, 0)
    l1 = Line([[0, 0], P1[i], P2[i]]).lw(7).c("blue2")
    l2 = Line([[0, 0], P1[j], P2[j]]).lw(6).c("blue2", 0.3)
    l3 = Line([[0, 0], P1[k], P2[k]]).lw(5).c("blue2", 0.1)
    pt = Points([P1[i], P2[i], P1[j], P2[j], P1[k], P2[k]],
                r=8).c("blue2", 0.2)
    show(l1, l2, l3, pt, ax, interactive=False, size=(900, 700), zoom=1.4)
    pb.print()
Ejemplo n.º 7
0
# load the mesh from filename, file objects are also supported
f = download(
    'https://github.com/mikedh/trimesh/raw/master/models/featuretype.STL')
mesh = trimesh.load_mesh(f)

# get a single cross section of the mesh
txt = 'cross section of the mesh'
mslice = mesh.section(plane_origin=mesh.centroid, plane_normal=[0, 0, 1])

pl = Plane(mesh.centroid, normal=[0, 0, 1], sx=6, sy=4, c='green', alpha=0.3)

slice_2D, to_3D = mslice.to_planar()

# show objects on N=2 non-synced renderers:
show([(mesh, pl), (slice_2D, txt)], N=2, sharecam=False, axes=7)

# if we wanted to take a bunch of parallel slices, like for a 3D printer
# we can do that easily with the section_multiplane method
# we're going to slice the mesh into evenly spaced chunks along z
# this takes the (2,3) bounding box and slices it into [minz, maxz]
z_extents = mesh.bounds[:, 2]
# slice every .125 model units (eg, inches)
z_levels = np.arange(*z_extents, step=0.125)

# find a bunch of parallel cross sections
sections = mesh.section_multiplane(plane_origin=mesh.bounds[0],
                                   plane_normal=[0, 0, 1],
                                   heights=z_levels)
N = len(sections)
printc("nr. of sections:", N, c='green')
Ejemplo n.º 8
0
    ws.append(w)
    # print(i, 'whisker:\n', w.info)

# build some theoretical expectation to be shown as a grey band
x = np.linspace(-1, 9, 100)
y = x / 5 + 0.2 * np.sin(x)
ye = y**2 / 5 + 0.1  # error on y
line = Line(np.c_[x, y])
band = Ribbon(np.c_[x, y - ye], np.c_[x, y + ye]).c('black', 0.1)

# build braces to inndicate stats significance and dosage
bra1 = Brace([0, 3], [2, 3], comment='*~*', s=0.7, style='[')
bra2 = Brace([4, -1], [8, -1], comment='dose > 3~\mug/kg', s=0.7)

# build custom axes
axes = Axes(
    xrange=[-1, 9],
    yrange=[-3, 5],
    htitle='\beta_c -expression: change in time',
    xtitle=' ',
    ytitle='Level of \beta_c  protein in \muM/l',
    xValuesAndLabels=[
        (0, 'Experiment^A\nat t=1h'),
        (4, 'Experiment^B\nat t=2h'),
        (8, 'Experiment^C\nat t=4h'),
    ],
    xLabelSize=0.02,
)

show(ws, bra1, bra2, line, band, __doc__, axes, zoom=1.1)
Ejemplo n.º 9
0
# np.random.seed(0)

# Generate some noisy data points along a line
x = np.linspace(0, 15, 25)
a, b = (np.random.rand(2) - 0.5) * 10  # choose a and b
y = a * x + b
noise = np.random.randn(len(x)) * 5  # create gaussian noise

# Plot the points and the "true" line without noise
plt = plot(x, y + noise, '*k', title=__doc__)
plt += DashedLine(x, y)

# Fit points and evaluate, with a boostrap and Monte-Carlo technique,
# the correct error coeffs and error bands. Return a Line object:
pfit = fit(
    [x, y + noise],
    deg=1,  # degree of the polynomial
    niter=500,  # nr. of MC iterations to compute error bands
    nstd=2,  # nr. of std deviations to display
)

plt += [pfit, pfit.errorBand, *pfit.errorLines]  # add these objects to Plot

msg = f"Generated a, b  : {np.array([a,b])}"\
      f"\nFitted    a, b  : {pfit.coefficients}"\
      f"\nerrors on a, b  : {pfit.coefficientErrors}"\
      f"\nave point spread: \sigma \approx {pfit.dataSigma:.3f} in y units"
msg = Text2D(msg, font='VictorMono', pos='bottom-left', c='red3')

show(plt, msg, interactorStyle="Image").close()
Ejemplo n.º 10
0
"""Identify and fill holes of an input mesh.
Holes are identified by locating boundary edges, linking them
together into loops, and then triangulating the resulting loops.
"""
from vedo import load, show, datadir

a = load(datadir + "bunny.obj").lw(0.1).bc('red')

# size = approximate limit to the size of the hole to be filled.
b = a.clone().pos(.2, 0, 0).fillHoles(size=0.1)
b.color("lb").bc('green').legend("filled mesh")

show(a, b, __doc__, elevation=-70)
Ejemplo n.º 11
0
shape = load(datadir+"lamp.vtk")

ms = []
cmaps = ("jet", "PuOr", "viridis")
for i in range(3):
    s = shape.clone().pos(0, i*2.2, 0)

    # colorize mesh
    scals = s.points()[:,2]
    s.cmap(cmaps[i], scals)

    ms.append(s)

# add 2D scalar bar to first mesh
ms[0].addScalarBar(title="my scalarbar\nnumber #0") #2D

# add 3D scalar bars
ms[1].addScalarBar3D(c="k", title="scalarbar #1", sy=3)

sc = ms[2].addScalarBar3D(pos=(1,0,-5),
                          c="k",
                          sy=2.8,                    # change y-size
                          title="A viridis 3D\nscalarbar to play with",
                          titleFont='Quikhand',
                          titleXOffset=-2,           # offset of labels
                          titleSize=1.5)
sc.rotateX(90) # make it vertical

show(ms, __doc__, axes=1, viewup='z')

Ejemplo n.º 12
0
"""Interactively cut a set of meshes"""
from vedo import dataurl, show, Volume

# generate an isosurface the volume for each thresholds
thresholds = [0.1, 0.25, 0.4, 0.6, 0.75, 0.9]

# isos is of type Mesh
isos = Volume(dataurl + 'quadric.vti').isosurface(thresholds)

show(isos, __doc__, axes=1, interactive=False).addCutterTool(isos)
Ejemplo n.º 13
0
"""Share the same color and trasparency mapping across different volumes"""
from vedo import Volume, Line, show
import numpy as np

arr = np.zeros(shape=(50, 50, 50))
for i in range(50):
    for j in range(50):
        for k in range(50):
            arr[i, j, k] = j

vol1 = Volume(arr).mode(1).cmap('jet', alpha=[0, 1], vmin=0,
                                vmax=80).addScalarBar("vol1")
vol2 = Volume(arr + 30).mode(1).cmap('jet', alpha=[0, 1], vmin=0,
                                     vmax=80).addScalarBar("vol2")

# or equivalently, to set transparency:
# vol1.alpha([0,1], vmin=0, vmax=70)

# can also manually build a scalarbar object to span the whole range:
sb = Line([50, 0, 0],
          [50, 50, 0]).cmap('jet', [0, 70]).addScalarBar3D("vol2",
                                                           c='black').scalarbar

show([(vol1, __doc__), (vol2, sb)], N=2, axes=1)
Ejemplo n.º 14
0
#vedo.show(ms, axes=True) # this already works!

pt = [0.0234, 0.0484, 0.0400]
ms.colorize_by_geodesic_distance_from_a_given_point(startpoint=pt)

mlab_mesh = ms.current_mesh()

vedo_mesh = vedo.Mesh(mlab_mesh).cmap('Paired').addScalarBar("distance")

print("Can convert back to pymeshlab.MeshSet:", type(vedo_mesh.to_meshlab()))

vedo.show(
    __doc__,
    vedo_mesh,
    vedo.Point(pt),
    axes=True,
    bg='green9',
    bg2='blue9',
    title="vedo + pymeshlab",
)

################################################################################
# Full list of filters, https://pymeshlab.readthedocs.io/en/latest/filter_list.html
#
# MeshLab offers plenty of useful filters, among which:
#
# ambient_occlusion
# compute_curvature_principal_directions
# colorize_by_geodesic_distance_from_a_given_point
# compute_normals_for_point_sets
# compute_planar_section
Ejemplo n.º 15
0
"""Create a set of transparencies
which can be passed to method pointColors()
"""
from vedo import load, show, datadir

mesh = load(datadir + "beethoven.ply")

# pick y coordinates of vertices and use them as scalars
scals = mesh.points()[:, 1]

# define opacities in the range of the scalar,
# at min(scals) alpha is 0.1,
# at max(scals) alpha is 0.9:
alphas = [0.1, 0.1, 0.3, 0.4, 0.9]

mesh.pointColors(scals, alpha=alphas, cmap="copper")
# print(mesh.getPointArray('pointColors_copper')) # retrieve scalars

show(mesh, __doc__, axes=9)
Ejemplo n.º 16
0
Archivo: lights.py Proyecto: zhDai/vedo
"""Set custom lights to a 3D scene"""
from vedo import Plotter, load, dataurl, Point, Light, show

man = load(dataurl + 'man.vtk').c('white').lighting('glossy')

p1 = Point([1, 0, 1], c='y')
p2 = Point([0, 0, 2], c='r')
p3 = Point([-1, -0.5, -1], c='b')
p4 = Point([0, 1, 0], c='k')

# Add light sources at the given positions
l1 = Light(p1, c='y')  # p1 can simply be [1,0,1]
l2 = Light(p2, c='r')
l3 = Light(p3, c='b')
l4 = Light(p4, c='w', intensity=0.5)

show(man, l1, l2, l3, l4, p1, p2, p3, p4, __doc__, axes=1, viewup='z')

#####################################################
##### Equivalent code using a Plotter instance: #####
#####################################################
# plt = Plotter(axes=1)
# plt += [man, p1, p2, p3, p4, l1, l2, l3, l4]
# plt.show(viewup='z')
#####################################################
Ejemplo n.º 17
0
    g.addChild(i)
for i in range(3):
    g.addChild(i)
for i in range(7, 9):
    g.addChild(i)
for i in range(3):
    g.addChild(12)  # add 3 children to node 12
g.addEdge(1, 16)

##################### build and draw
graph = g.build().unpack(0).lineWidth(4)  # get the vedo 3d graph lines
nodes = graph.points()  # get the 3d points of the nodes

pts = Points(nodes, r=10).lighting('off')

v1 = ['node' + str(n) for n in range(len(nodes))]
v2 = [sin(x) for x in range(len(nodes))]
labs1 = pts.labels(v1, scale=.02, italic=True).shift(.05, 0.02, 0).c('green')
labs2 = pts.labels(v2, scale=.02, precision=3).shift(.05, -.02, 0).c('red')

# Interpolate the node value to color the edges:
graph.cmap('viridis', v2).addScalarBar3D(c='k')
graph.scalarbar.shift(.3, 0, 0)
pts.cmap('viridis', v2)

# This would colorize the edges directly with solid color based on a v3 array:
# v3 = [sin(x) for x in range(graph.NCells())]
# graph.cmap('jet', v3).addScalarBar()

show(pts, graph, labs1, labs2, __doc__, axes=9)
Ejemplo n.º 18
0
#####################################################################################
#####################################################################################

# THE FOLLOWING CODE DOES THE SAME AND IT IS MEANT TO ILLUSTRATE
# HOW THE slicer() METHOD WORKS INTERNALLY:

from vedo import *

################################ prepare the scene
#vol = Volume(10*np.random.randn(300,250,200)+100) # test
vol = load(filename)  #.printInfo()
box = vol.box().wireframe().alpha(0)  # make an invisible box
vp = show(box,
          axes=1,
          bg='white',
          bg2='lightblue',
          size=(850, 700),
          title=filename,
          interactive=False,
          newPlotter=True)
vp.showInset(vol, pos=(1, 1), size=0.3, draggable=False)

################# inits
visibles = [None, None, None]
cmaps = ["gist_ncar_r", "jet", "Spectral_r", "hot_r", "gist_earth_r", "bone_r"]
cmap = cmaps[0]
dims = vol.dimensions()
i_init = int(dims[2] / 2)
msh = vol.zSlice(i_init).pointColors(cmap=cmap).lighting('plastic')
msh.addScalarBar(pos=(0.04, 0.0), horizontal=True, titleFontSize=0)
vp.renderer.AddActor(msh)
visibles[2] = msh
Ejemplo n.º 19
0
np.random.seed(1)
data = np.random.uniform(0, 1, (25, 100))
X = np.linspace(-1, 1, data.shape[-1])
G = 0.15 * np.exp(-4 * X**2)  # use a  gaussian as a weight

# Generate line plots
lines = []
for i in range(len(data)):
    pts = np.c_[X, np.zeros_like(X) + i / 10, G * data[i]]
    lines.append(Line(pts, lw=3))

# Set up the first frame
axes = dict(xtitle='\Deltat /\mus', ytitle="source", ztitle="")
plt = show(lines,
           __doc__,
           axes=axes,
           elevation=-30,
           interactive=False,
           bg='k8')

# vd = Video("anim_lines.mp4")
for i in range(50):
    data[:, 1:] = data[:, :-1]  # Shift data to the right
    data[:, 0] = np.random.uniform(0, 1, len(data))  # Fill-in new values
    for i in range(len(data)):  # Update data
        newpts = lines[i].points()
        newpts[:, 2] = G * data[i]
        lines[i].points(newpts).cmap('gist_heat_r', newpts[:, 2])
    plt.show()
    if plt.escaped: break  # if ESC is hit during the loop
    # vd.addFrame()
# vd.close()
Ejemplo n.º 20
0
"""Custom color and transparency maps for Volumes"""
from vedo import load, datadir, show
from vedo.pyplot import cornerHistogram

# Build a Volume object.
# A set of color/transparency values - of any length - can be passed
# to define the transfer function in the range of the scalar.
#  E.g.: setting alpha=[0, 0, 0, 1, 0, 0, 0] would make visible
#  only voxels with value close to center of the range (see histogram).
vol = load(datadir + 'embryo.slc')  # returns a Volume
vol.color([
    (0, "green"),
    (49, "green"),
    (50, "blue"),
    (109, "blue"),
    (110, "red"),
    (180, "red"),
])
# vol.mode('max-projection')
vol.alpha([0., 1.])
vol.alphaUnit(8)  # absorption unit, higher factors = higher transparency
vol.addScalarBar3D(title='color~\dot~alpha transfer function', c='k')

ch = cornerHistogram(vol, logscale=True, pos='bottom-left')

# show both Volume and Mesh
show(vol, ch, __doc__, axes=1, zoom=1.2)
Ejemplo n.º 21
0
import numpy as np

################################################################################## 2D
for i, f in enumerate(fonts):
    Text2D(
        f +
        ': The quick fox jumps over the lazy dog. 1234567890 αβγδεθλμνπστφψω',
        pos=(.015, 1 - (i + 3) * .06),
        font=f,
        s=1.3,
        c='k')

Text2D("List of Available Fonts", pos='top-center', bg='k', s=1.1)
show(...,
     bg2='cornsilk',
     axes=False,
     zoom=1.2,
     size=(1200, 700),
     interactive=False)

################################################################################## 3D
# Symbols ~ ^ _ are reserved modifiers:
#  use ~ to add a short space, 1/4 of the default size,
#  use ^ and _ to start up/sub scripting, a space terminates them.
txt = """The quick fox jumps over the lazy dog.
Symbols: !@#$%&*()+=-{}[]:;|<>?/\euro1234567890\~
Units:  \delta=0.25E-03 ~μm, T_sea ~=~5.3~±0.7~\circC
LaTeX: \nabla\dotE=~4\pi~\rho, \nabla\timesE=~-1/c~~\partialB/\partialt
       ih~\partial/\partialt~\Psi = [-h^2 /2m\nabla^2  + V(r,t)]~\Psi(r,t)
       \DeltaE~=~h\nu, y = \Sigma_n ~A_n cos(\omega_n t+\delta_n ) sin(k_n x)
       \intx\dot~dx = \onehalf x\^2 + const.
       d^2 x^\mu  + \Gamma^\mu_\alpha\beta ~dx^\alpha ~dx^\beta  = 0
Ejemplo n.º 22
0
    v_cyclic=True,
    function=one_sheet_hyperboloid,
    adaptor_class=VtkAdaptor,
)
poly_data = DodecaTessagon(**options).create_mesh()
dodeca = Mesh(poly_data).x(5).computeNormals()
dodeca.lineWidth(1).backColor('tomato')


# ---------------------------------------------------------
def chubby_torus(u, v):
    return general_torus(5, 1.5, v, warp_var(u, 0.2))

options = dict(
    u_range=[0.0, 1.0],
    v_range=[0.0, 1.0],
    u_num=2,
    v_num=12,
    color_pattern=1,
    function=chubby_torus,
    adaptor_class=VtkAdaptor,
)
poly_data = FloretTessagon(**options).create_mesh()
poly_data.GetCellData().GetScalars().SetName("color_pattern")
floret = Mesh(poly_data).reverse().y(-9).scale(0.7)
floret.cmap('Greens_r', input_array="color_pattern", mode='cells').lineWidth(0.1)

# ---------------------------------------------------------
show(rhombus, dodeca, floret, __doc__, axes=1)

Ejemplo n.º 23
0
"""Koch snowflake fractal"""
from vedo import sqrt, Line, show

levels = 7

def koch(level):
    # Compute Koch fractal contour points
    k = sqrt(3)/2
    if level:
        points = koch(level-1) + [(0, 0)]  # recursion!
        kpts = []
        for i in range(len(points)-1):
            p1, p2 = points[i], points[i+1]
            dx, dy = (p2[0]-p1[0])/3, (p2[1]-p1[1])/3
            pa = (p1[0] + dx  , p1[1] + dy  )
            pb = (p1[0] + dx*2, p1[1] + dy*2)
            z = complex(pb[0]-pa[0], pb[1]-pa[1]) * (0.5-k*1j)
            p3 = (pa[0]+z.real, pa[1]+z.imag)
            kpts += [p1, pa, p3, pb]
        return kpts
    else:
        return [(0, 0), (1, 0), (0.5, k)]

kochs = []
for i in range(levels):
    # Create a Line from the points and mesh the inside with minimum resolution
    kmsh = Line(koch(i)).tomesh(resMesh=1).lw(0).color(-i).z(-i/1000)
    kochs.append(kmsh)

show(kochs, __doc__+ f"\nlevels: {levels}\npoints: {kmsh.N()}", axes=10).close()
Ejemplo n.º 24
0
u[...] = 1.0
U[n // 2 - r:n // 2 + r, n // 2 - r:n // 2 + r] = 0.50
V[n // 2 - r:n // 2 + r, n // 2 - r:n // 2 + r] = 0.25
u += 0.05 * np.random.uniform(-1, 1, (n, n))
v += 0.05 * np.random.uniform(-1, 1, (n, n))

sy, sx = V.shape
grd = Grid(sx=sx, sy=sy, resx=sx, resy=sy)
grd.lineWidth(0).wireframe(False).lighting(ambient=0.5)
formula = r'(u,v)=(D_u\cdot\Delta u -u v v+F(1-u), D_v\cdot\Delta v +u v v -(F+k)v)'
ltx = Latex(formula, s=15, pos=(0, -sy / 1.9, 0))
print('Du, Dv, F, k, name =', Du, Dv, F, k, name)

for step in range(Nsteps):
    for i in range(25):
        Lu = (U[0:-2, 1:-1] + U[1:-1, 0:-2] - 4 * U[1:-1, 1:-1] + U[1:-1, 2:] +
              U[2:, 1:-1])
        Lv = (V[0:-2, 1:-1] + V[1:-1, 0:-2] - 4 * V[1:-1, 1:-1] + V[1:-1, 2:] +
              V[2:, 1:-1])
        uvv = u * v * v
        u += Du * Lu - uvv + F * (1 - u)
        v += Dv * Lv + uvv - (F + k) * v

    grd.cmap('ocean_r', V.ravel(), on='cells', arrayName="escals")
    grd.mapCellsToPoints()
    newpts = grd.points()
    newpts[:, 2] = grd.getPointArray('escals') * 25  # assign z
    grd.points(newpts)  # set the new points
    show(ltx, grd, zoom=1.25, elevation=-.15, bg='linen', interactive=False)

interactive()
Ejemplo n.º 25
0
"""Read and show meshio objects"""
import meshio
from vedo import datadir, show, Mesh

mesh = meshio.read(datadir+'shuttle.obj')

# vedo understands meshio format for polygonal data:
#show(mesh, __doc__)

# explicitly convert it to a vedo.Mesh object:
m = Mesh(mesh).lineWidth(1).color('tomato').printInfo()
show(m, __doc__)
Ejemplo n.º 26
0
y2 = 3 * np.exp(-x) * np.cos(2 * x)**2

axes_opts = dict(numberOfDivisions=3, xyPlaneColor='lavender', xyAlpha=1)

# Build first plot and its axes:
plt1 = plot(
    x,
    y1,
    title=__doc__,
    xtitle='time in seconds',
    ytitle='some function [a.u.]',
)

# Build second plot and its axes:
plt2 = plot(
    x,
    y2,
    title='my second plot',
    xtitle='time in seconds',
    ytitle='some other function',
    lc='red',
    pad=0,  # no margins
    axes=axes_opts,
)

# Scale the plot2 to make it small
#  and position it anywhere in the scene:
plt2.scale(0.5).pos(2, 1.4, 0.01)

show(plt1, plt2, zoom=1.1)
Ejemplo n.º 27
0
"""Computes the signed distance
of one mesh from another
"""
from vedo import Sphere, Cube, show

s1 = Sphere()
s2 = Cube(pos=[1, 0, 0], c='white', alpha=0.4)

s1.distanceToMesh(s2, signed=True, negate=False)

s1.addScalarBar(title='Signed\nDistance')

#print(s1.getPointArray("Distance"))

show(s1, s2, __doc__, axes=11).close()
Ejemplo n.º 28
0
import pyshtools

from scipy.interpolate import griddata
from vedo import Points, load, mag, show, spher2cart, datadir
print(__doc__)

#############################################################
lmax = 10  # maximum degree of the spherical harm. expansion
N = 50  # number of grid intervals on the unit sphere
rmax = 1.5  # line length
x0 = [0, 0, 0]  # set object at this position
#############################################################

shape = load(datadir + 'apple.ply').normalize().pos(x0).lineWidth(0.1)

show(shape, at=0, N=2, axes=dict(zxGrid=False))

############################################################
# cast rays from the center and find intersections
agrid, pts = [], []
for th in np.linspace(0, np.pi, N, endpoint=0):
    lats = []
    for ph in np.linspace(0, 2 * np.pi, N, endpoint=0):
        p = spher2cart(rmax, th, ph)
        intersections = shape.intersectWithLine([0, 0, 0], p)
        if len(intersections):
            value = mag(intersections[0])
            lats.append(value)
            pts.append(intersections[0])
        else:
            lats.append(rmax)
Ejemplo n.º 29
0
from vedo import Mesh, dataurl, show

shape = Mesh(dataurl + "lamp.vtk")

ms = []
cmaps = ("jet", "PuOr", "viridis")
for i in range(3):
    s = shape.clone(deep=False).pos(0, i * 2.2, 0)
    # colorize mesh
    scals = s.points()[:, 2]
    s.cmap(cmaps[i], scals)
    ms.append(s)

# add 2D scalar bar to first mesh
ms[0].addScalarBar(title="my scalarbar\nnumber #0")  #2D

# add 3D scalar bars
ms[1].addScalarBar3D(c="k", title="scalarbar #1", sy=3)

sc = ms[2].addScalarBar3D(
    pos=(1, 0, -5),
    c="k",
    sy=2.8,  # change y-size
    title="A viridis 3D\nscalarbar to play with",
    titleFont='Quikhand',
    titleXOffset=-2,  # offset of labels
    titleSize=1.5)
sc.scalarbar.rotateX(90)  # make it vertical

show(ms, __doc__, axes=1, viewup='z').close()