Ejemplo n.º 1
0
 def __init__(self,
              inp,
              hidden_dim,
              oup,
              kernel_size,
              stride,
              use_se=False,
              use_hs=False,
              momentum=0.1):
     """Init InvertedResidualSE."""
     super(InvertedResidualSE, self).__init__()
     self.identity = stride == 1 and inp == oup
     self.ir_block = Sequential(
         # pw
         ops.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
         ops.BatchNorm2d(hidden_dim, momentum=momentum),
         ops.Hswish() if use_hs else ops.Relu(inplace=True),
         # dw
         ops.Conv2d(hidden_dim,
                    hidden_dim,
                    kernel_size,
                    stride, (kernel_size - 1) // 2,
                    groups=hidden_dim,
                    bias=False),
         ops.BatchNorm2d(hidden_dim, momentum=momentum),
         # Squeeze-and-Excite
         SELayer(hidden_dim) if use_se else Sequential(),
         ops.Hswish() if use_hs else ops.Relu(inplace=True),
         # pw-linear
         ops.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
         ops.BatchNorm2d(oup, momentum=momentum),
     )
Ejemplo n.º 2
0
def transform_model(model):
    """Transform the torch model to Vega model."""
    new_model_dict = OrderedDict()
    for name, module in model.name_cells().items():
        if isinstance(module, atom_op):
            if isinstance(module, nn.Flatten):
                new_model_dict["mean"] = ops.AdaptiveAvgPool2d()
            new_model_dict[name] = _transform_op(module)

        sub_modules = OrderedDict()
        if isinstance(module, nn.SequentialCell):
            for sub_name, sub_module in module.name_cells().items():
                if isinstance(sub_module, atom_block):
                    sub_modules[sub_name] = _transform_block(sub_module)
                    sub_modules[sub_name].update_parameters_name(name + "." +
                                                                 sub_name +
                                                                 ".")
                if isinstance(sub_module, atom_op):
                    sub_modules[sub_name] = _transform_op(sub_module)
                    sub_modules[sub_name].update_parameters_name(name + "." +
                                                                 sub_name +
                                                                 ".")
            new_model_dict[name] = Sequential(sub_modules)
    model = Sequential(new_model_dict)
    desc = model.to_desc()
    vega_model = NetworkDesc(desc).to_model()
    return vega_model
Ejemplo n.º 3
0
    def __init__(self,
                 cfgs,
                 mode='small',
                 input_channel=3,
                 feat_channels=16,
                 special_stride=1,
                 num_classes=10,
                 width_mult=1.,
                 block=InvertedResidualSE,
                 momentum=0.1,
                 is_prune_mode=False,
                 **kwargs):
        """Init MobileNetV3.

        :params cfgs: cfgs for mobilenetv3
        :type cfgs: list
        :params special_stride: the stride of the first InvertedResidualSE block.
        :type special_stride: int (1 for cifar10, 2 for imagenet)
        """
        super(MobileNetV3, self).__init__()
        self.cfgs = cfgs

        # building first layer
        if not is_prune_mode:
            feat_channels = _make_divisible(feat_channels * width_mult, 8)
        else:
            feat_channels = int(feat_channels * width_mult)
        layers = [
            ConvBnAct(input_channel,
                      feat_channels,
                      kernel_size=3,
                      momentum=momentum,
                      stride=special_stride,
                      padding=1,
                      activation='hswish')
        ]

        # buidling blocks
        # kernel_size, expand_ratio, output_channels, use_se, use_hs, stride
        for k, t, c, use_se, use_hs, s in self.cfgs:
            output_channel = _make_divisible(
                c * width_mult, 8) if not is_prune_mode else int(c *
                                                                 width_mult)
            hidden_dim = _make_divisible(t, 8) if not is_prune_mode else t
            layers.append(
                block(feat_channels, hidden_dim, output_channel, k, s, use_se,
                      use_hs, momentum))
            feat_channels = output_channel
        self.features = Sequential(*layers)

        # building last linear layer
        self.avgpool = ops.AdaptiveAvgPool2d((1, 1))
        chn = 1280 if mode == 'large' else 1024
        self.classifier = Sequential(ops.View(),
                                     ops.Linear(feat_channels, chn),
                                     ops.Hswish(), ops.Dropout(0.2),
                                     ops.Linear(chn, num_classes))
        self._initialize_weights()
Ejemplo n.º 4
0
    def __init__(self, encoding, n_class=1000):
        super(DNet, self).__init__()
        op_names = ["conv3", "conv1", "conv3_grp2", "conv3_grp4", "conv3_base1", "conv3_base32", "conv3_sep"]
        block_str, num_channel, macro_str = encoding.split('_')
        curr_channel, index = int(num_channel), 0
        _big_model = "*" in block_str
        if _big_model:
            block_encoding_list = block_str.split('*')
        # stem
        self.layers = Sequential(
            create_op('conv3', 3, curr_channel // 2, stride=2),
            ops.Relu(),
            create_op('conv3', curr_channel // 2, curr_channel // 2),
            ops.Relu(),
            create_op('conv3', curr_channel // 2, curr_channel, stride=2),
            ops.Relu()
        )

        # body
        if not _big_model:
            while index < len(macro_str):
                stride = 1
                if macro_str[index] == '-':
                    stride = 2
                    index += 1

                channel_increase = int(macro_str[index])
                block = EncodedBlock(block_str, curr_channel, op_names, stride, channel_increase)
                self.layers.append(block)
                curr_channel *= channel_increase
                index += 1
        else:
            block_encoding_index = 0
            while index < len(macro_str):
                stride = 1
                if macro_str[index] == '-':
                    stride = 2
                    index += 1
                    block_encoding_index += 1
                channel_increase = int(macro_str[index])
                block_encoding = block_encoding_list[block_encoding_index]
                block = EncodedBlock(block_encoding, curr_channel, op_names, stride, channel_increase)
                self.layers.append(block)
                curr_channel *= channel_increase
                index += 1
        self.layers.append(ops.AdaptiveAvgPool2d((1, 1)))
        self.view = ops.View()
        self.fc = ops.Linear(in_features=curr_channel, out_features=n_class)
Ejemplo n.º 5
0
 def __init__(self, in_chnls, cardinality, group_depth, stride):
     super(ResNeXt_Block, self).__init__()
     self.group_chnls = cardinality * group_depth
     self.conv1 = BN_Conv2d(in_chnls,
                            self.group_chnls,
                            1,
                            stride=1,
                            padding=0)
     self.conv2 = BN_Conv2d(self.group_chnls,
                            self.group_chnls,
                            3,
                            stride=stride,
                            padding=1,
                            groups=cardinality)
     self.conv3 = ops.Conv2d(self.group_chnls,
                             self.group_chnls * 2,
                             1,
                             stride=1,
                             padding=0)
     self.bn = ops.BatchNorm2d(self.group_chnls * 2)
     if stride != 1 or in_chnls != self.group_chnls * 2:
         self.short_cut = Sequential(
             ops.Conv2d(in_chnls,
                        self.group_chnls * 2,
                        1,
                        stride,
                        bias=False), ops.BatchNorm2d(self.group_chnls * 2))
     else:
         self.short_cut = None
Ejemplo n.º 6
0
def make_res_layer_from_code(block,
                             inplanes,
                             planes,
                             blocks,
                             stride=1,
                             dilation=1,
                             style='pytorch',
                             with_cp=False,
                             code=None):
    """Make res layer from code."""
    if code is None:
        return make_res_layer(block, inplanes, planes, blocks, stride,
                              dilation, style, with_cp)

    strides = map(int, code)
    layers = []
    for stride in strides:
        layers.append(
            block(inplanes=inplanes,
                  planes=planes,
                  stride=stride,
                  dilation=dilation,
                  style=style,
                  with_cp=with_cp))
        inplanes = planes * block.expansion
    return Sequential(*layers)
Ejemplo n.º 7
0
 def __init__(self,
              code='111-2111-211111-211',
              block='BottleneckBlock',
              in_channels=64,
              weight_file=None,
              out_layers=None):
     """Init SerialBackbone."""
     super(SerialBackbone, self).__init__()
     self.inplanes = in_channels
     self.planes = self.inplanes
     self.weight_file = weight_file
     self.channels = [3]
     self.code = code.split('-')
     self.block = ClassFactory.get_cls(ClassType.NETWORK, block)
     self._make_stem_layer()
     self.layers = Sequential() if out_layers == -1 else OutDictSequential()
     self.make_cells()
Ejemplo n.º 8
0
 def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=False):
     super(BN_Conv2d, self).__init__()
     self.seq = Sequential(
         ops.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
                    padding=padding, dilation=dilation, groups=groups, bias=bias),
         ops.BatchNorm2d(out_channels),
         ops.Relu()
     )
Ejemplo n.º 9
0
 def __init__(self, channel, reduction=4):
     """Init SELayer."""
     super(SELayer, self).__init__()
     self.avg_pool = ops.AdaptiveAvgPool2d(1)
     hidden_dim = _make_divisible(channel // reduction, 8)
     self.fc = Sequential(ops.Linear(channel, hidden_dim, use_bias=False),
                          ops.Relu(inplace=True),
                          ops.Linear(hidden_dim, channel, use_bias=False),
                          ops.Hsigmoid())
Ejemplo n.º 10
0
 def _make_layers(self, inplanes, d, blocks, stride, code):
     """Make layer."""
     strides = map(int, code)
     layers = []
     for stride in strides:
         layers.append(ResNeXt_Block(
             inplanes, self.cardinality, d, stride))
         inplanes = self.cardinality * d * 2
     return Sequential(*layers), inplanes
Ejemplo n.º 11
0
 def make_layers(self, block, inplanes, planes, code=None):
     """Make ResNet layers."""
     strides = list(map(int, code))
     layers = []
     layers.append(block(inplanes, planes, stride=strides[0]))
     inplanes = planes * block.expansion
     for stride in strides[1:]:
         layers.append(block(inplanes, planes, stride=stride))
         inplanes = planes * block.expansion
     return Sequential(*layers), inplanes
Ejemplo n.º 12
0
def make_resnext_layer_from_code(block, inplanes, planes, cardinality=32, dilation=1,
                                 with_cp=False, code=None):
    """Make resnext layer from code."""
    strides = list(map(int, code))
    layers = []
    layers.append(block(in_chnls=inplanes, cardinality=cardinality,
                        group_depth=planes, stride=strides[0]))
    inplanes = planes * cardinality * 2
    for stride in strides[1:]:
        layers.append(block(in_chnls=inplanes, cardinality=cardinality,
                            group_depth=planes, stride=stride))
    return Sequential(*layers), inplanes
Ejemplo n.º 13
0
def make_resnet_layer_from_code(block, inplanes, planes, dilation=1,
                                with_cp=False, code=None):
    """Make resnet layer from code."""
    strides = list(map(int, code))
    layers = []
    layers.append(block(inplanes=inplanes, planes=planes, stride=strides[0], dilation=dilation,
                        with_cp=with_cp, downsample=True))
    inplanes = planes * block.expansion
    for stride in strides[1:]:
        layers.append(block(inplanes=inplanes, planes=planes, stride=stride, dilation=dilation,
                            with_cp=with_cp))
        inplanes = planes * block.expansion
    return Sequential(*layers), inplanes
Ejemplo n.º 14
0
    def __init__(self, encoding):
        super(DNetBackbone, self).__init__()
        op_names = ["conv3", "conv1", "conv3_grp2", "conv3_grp4", "conv3_base1", "conv3_base32", "conv3_sep"]

        # code with kangning
        block_str, num_channel, macro_str = encoding.split('_')
        curr_channel, index = int(num_channel), 0

        _big_model = "*" in block_str
        if _big_model:
            block_encoding_list = block_str.split('*')

        # stem
        layers = [
            create_op('conv3', 3, curr_channel // 2, stride=2),
            ops.Relu(),
            create_op('conv3', curr_channel // 2, curr_channel // 2),
            ops.Relu(),
            create_op('conv3', curr_channel // 2, curr_channel, stride=2),
            ops.Relu()
        ]

        # body
        if not _big_model:
            while index < len(macro_str):
                stride = 1
                if macro_str[index] == '-':
                    stride = 2
                    index += 1

                channel_increase = int(macro_str[index])
                block = EncodedBlock(block_str, curr_channel, op_names, stride, channel_increase)
                layers.append(block)
                curr_channel *= channel_increase
                index += 1
        else:
            block_encoding_index = 0
            while index < len(macro_str):
                stride = 1
                if macro_str[index] == '-':
                    stride = 2
                    index += 1
                    block_encoding_index += 1
                channel_increase = int(macro_str[index])
                block_encoding = block_encoding_list[block_encoding_index]
                block = EncodedBlock(block_encoding, curr_channel, op_names, stride, channel_increase)
                layers.append(block)
                curr_channel *= channel_increase
                index += 1
        layers.append(ops.AdaptiveAvgPool2d((1, 1)))
        self.layers = Sequential(*layers)
Ejemplo n.º 15
0
def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   style='pytorch',
                   with_cp=False):
    """Build resnet layer."""
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        conv_layer = ops.Conv2d(inplanes,
                                planes * block.expansion,
                                kernel_size=1,
                                stride=stride,
                                bias=False)
        norm_layer = ops.BatchNorm2d(planes * block.expansion)
        downsample = Sequential(conv_layer, norm_layer)
    layers = []
    layers.append(
        block(inplanes=inplanes,
              planes=planes,
              stride=stride,
              dilation=dilation,
              downsample=downsample,
              style=style,
              with_cp=with_cp))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(inplanes=inplanes,
                  planes=planes,
                  stride=1,
                  dilation=dilation,
                  style=style,
                  with_cp=with_cp))
    return Sequential(*layers)
Ejemplo n.º 16
0
 def _blocks(self, out_channels, desc_blocks):
     blocks = ModuleList()
     in_channels = 32
     for i in range(desc_blocks):
         blocks.append(
             Sequential(
                 ops.Conv2d(in_channels,
                            out_channels,
                            padding=1,
                            kernel_size=3),
                 ops.BatchNorm2d(out_channels),
                 ops.Relu(inplace=True),
             ))
         in_channels = out_channels
     return blocks
Ejemplo n.º 17
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False):
        """Init Bottleneck."""
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']
        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.norm1 = ops.BatchNorm2d(planes)
        self.norm2 = ops.BatchNorm2d(planes)
        self.norm3 = ops.BatchNorm2d(planes * self.expansion)

        self.conv1 = ops.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.with_modulated_dcn = False
        self.conv2 = ops.Conv2d(
            planes,
            planes,
            kernel_size=3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False,
        )
        self.conv3 = ops.Conv2d(planes,
                                planes * self.expansion,
                                kernel_size=1,
                                bias=False)
        self.relu = ops.Relu(inplace=True)

        if stride > 1 or downsample is not None:
            conv_layer = ops.Conv2d(inplanes,
                                    planes * self.expansion,
                                    kernel_size=1,
                                    stride=stride,
                                    bias=False)
            norm_layer = ops.BatchNorm2d(planes * self.expansion)
            self.downsample = Sequential(conv_layer, norm_layer)
        else:
            self.downsample = None
Ejemplo n.º 18
0
def _transfowm_model(model):
    """Transform the torch model to Vega model."""
    new_model_dict = OrderedDict()
    for name, module in model.named_children():
        # print("name:", name, "module:", module, "type:", type(module))
        if isinstance(module, atom_op):
            new_model_dict[name] = _transsorm_op(module)

        sub_modules = OrderedDict()
        if isinstance(module, nn.Sequential):
            for sub_name, sub_module in module.named_children():
                if isinstance(sub_module, atom_block):
                    sub_modules[sub_name] = _transform_block(sub_module)
                if isinstance(sub_module, atom_op):
                    sub_modules[sub_name] = _transsorm_op(sub_module)
            new_model_dict[name] = Sequential(sub_modules)
        return new_model_dict
Ejemplo n.º 19
0
    def __init__(self, num_classes, backbone='ResNetBackbone', neck='FPN', **kwargs):
        """Create layers.

        :param num_class: number of class
        :type num_class: int
        """
        backbone_cls = ClassFactory.get_instance(ClassType.NETWORK, backbone)
        neck_cls = ClassFactory.get_instance(ClassType.NETWORK, neck, in_channels=backbone_cls.out_channels)
        backbone_neck = Sequential()
        backbone_neck.append(backbone_cls, 'body')
        backbone_neck.append(neck_cls, 'fpn')
        super(FasterRCNN, self).__init__(backbone_neck, num_classes, **kwargs)
Ejemplo n.º 20
0
    def __init__(self, inp, oup, stride, kernel=3, expand_ratio=1):
        """Construct InvertedResidual class.

        :param inp: input channel
        :param oup: output channel
        :param stride: stride
        :param kernel: kernel
        :param expand_ratio: channel increase multiplier
        """
        super(InvertedConv, self).__init__()
        hidden_dim = round(inp * expand_ratio)
        conv = []
        if expand_ratio > 1:
            conv = [
                ops.Conv2d(in_channels=inp,
                           out_channels=hidden_dim,
                           kernel_size=1,
                           stride=1,
                           padding=0,
                           bias=False),
                ops.BatchNorm2d(num_features=hidden_dim),
                ops.Relu6(inplace=True)
            ]
        conv = conv + [
            ops.Conv2d(in_channels=hidden_dim,
                       out_channels=hidden_dim,
                       kernel_size=kernel,
                       stride=stride,
                       padding=kernel // 2,
                       groups=hidden_dim,
                       bias=False,
                       depthwise=True),
            ops.BatchNorm2d(num_features=hidden_dim),
            ops.Relu6(inplace=True),
            ops.Conv2d(in_channels=hidden_dim,
                       out_channels=oup,
                       kernel_size=1,
                       stride=1,
                       padding=0,
                       bias=False),
            ops.BatchNorm2d(num_features=oup)
        ]
        self.models = Sequential(*conv)
Ejemplo n.º 21
0
 def __init__(self,
              inplanes,
              planes,
              stride=1,
              dilation=1,
              downsample=None,
              style='pytorch',
              with_cp=False):
     """Init BasicBlock."""
     super(BasicBlock, self).__init__()
     self.expansion = 1
     self.norm1 = ops.BatchNorm2d(planes)
     self.norm2 = ops.BatchNorm2d(planes)
     self.conv1 = ops.Conv2d(inplanes,
                             planes,
                             3,
                             stride=stride,
                             padding=dilation,
                             dilation=dilation,
                             bias=False)
     self.conv2 = ops.Conv2d(planes, planes, 3, padding=1, bias=False)
     self.relu = ops.Relu(inplace=True)
     if stride > 1 or downsample is not None:
         conv_layer = ops.Conv2d(inplanes,
                                 planes * self.expansion,
                                 kernel_size=1,
                                 stride=stride,
                                 bias=False)
         norm_layer = ops.BatchNorm2d(planes)
         self.downsample = Sequential(conv_layer, norm_layer)
     else:
         self.downsample = None
     self.inplanes = inplanes
     self.planes = planes
     self.stride = stride
     self.dilation = dilation
     self.style = style
     assert not with_cp
Ejemplo n.º 22
0
def conv33_sep(in_channel, out_channel, stride):
    """Conv 3*3 sep."""
    return Sequential(
        conv33(in_channel, in_channel, stride, groups=in_channel),
        conv11(in_channel, out_channel))
Ejemplo n.º 23
0
class SerialBackbone(Module):
    """Serial Net for spnas."""
    def __init__(self,
                 code='111-2111-211111-211',
                 block='BottleneckBlock',
                 in_channels=64,
                 weight_file=None,
                 out_layers=None):
        """Init SerialBackbone."""
        super(SerialBackbone, self).__init__()
        self.inplanes = in_channels
        self.planes = self.inplanes
        self.weight_file = weight_file
        self.channels = [3]
        self.code = code.split('-')
        self.block = ClassFactory.get_cls(ClassType.NETWORK, block)
        self._make_stem_layer()
        self.layers = Sequential() if out_layers == -1 else OutDictSequential()
        self.make_cells()

    @property
    def out_channels(self):
        """Output Channel for Module."""
        return self.layers.out_channels

    def load_state_dict(self, state_dict=None, strict=None):
        """Load and freeze backbone state."""
        if isinstance(self.layers, Sequential):
            return super().load_state_dict(state_dict, strict or False)
        state_dict = {
            k.replace('backbone.', ''): v
            for k, v in state_dict.items()
        }
        state_dict = {k.replace('body.', ''): v for k, v in state_dict.items()}
        not_swap_keys = super().load_state_dict(state_dict, strict or False)
        if not_swap_keys:
            need_freeze_layers = [
                name for name, parameter in self.named_parameters()
                if name not in not_swap_keys
            ]
            self.freeze(need_freeze_layers)
        else:
            self.freeze(['layers'])

    def _make_stem_layer(self):
        """Make stem layer."""
        self.conv1 = ops.Conv2d(3,
                                self.inplanes,
                                kernel_size=7,
                                stride=2,
                                padding=3,
                                bias=False)
        self.bn1 = ops.BatchNorm2d(self.inplanes)
        self.relu = ops.Relu(inplace=True)
        self.maxpool = ops.MaxPool2d(kernel_size=3, stride=2, padding=1)

    def make_cells(self):
        """Make ResNet Cell."""
        for i, code in enumerate(self.code):
            layer, planes = self.make_layers(self.block,
                                             self.inplanes,
                                             self.planes,
                                             code=code)
            self.channels.append(planes)
            self.inplanes = planes
            self.layers.append(layer)
            self.planes = self.planes * 2

    def make_layers(self, block, inplanes, planes, code=None):
        """Make ResNet layers."""
        strides = list(map(int, code))
        layers = []
        layers.append(block(inplanes, planes, stride=strides[0]))
        inplanes = planes * block.expansion
        for stride in strides[1:]:
            layers.append(block(inplanes, planes, stride=stride))
            inplanes = planes * block.expansion
        return Sequential(*layers), inplanes
Ejemplo n.º 24
0
def create_op(opt_name, in_channel, out_channel, stride=1):
    """Create op."""
    layer = OPS[opt_name](in_channel, out_channel, stride)
    bn = ops.BatchNorm2d(out_channel)
    return Sequential(layer, bn)