Ejemplo n.º 1
0
def breakout_a2c_evaluate(checkpoint_file_path, takes=10):
    model_checkpoint = torch.load(checkpoint_file_path)
    device = torch.device('cuda:0')

    env = FrameStack(
        ClassicAtariEnv('BreakoutNoFrameskip-v4').instantiate(preset='record'),
        k=4)

    model = StochasticPolicyModelFactory(
        input_block=ImageToTensorFactory(),
        backbone=NatureCnnFactory(
            input_width=84, input_height=84,
            input_channels=4)).instantiate(action_space=env.action_space)

    model.load_state_dict(model_checkpoint)
    model = model.to(device)

    model.eval()

    rewards = []
    lengths = []

    for i in range(takes):
        result = record_take(model, env, device)
        rewards.append(result['r'])
        lengths.append(result['l'])

    print(pd.DataFrame({'lengths': lengths, 'rewards': rewards}).describe())
Ejemplo n.º 2
0
def breakout_a2c():
    device = torch.device('cuda:0')
    seed = 1001

    # Set random seed in python std lib, numpy and pytorch
    set_seed(seed)

    # Create 16 environments evaluated in parallel in sub processess with all usual DeepMind wrappers
    # These are just helper functions for that
    vec_env = SubprocVecEnvWrapper(ClassicAtariEnv('BreakoutNoFrameskip-v4'),
                                   frame_history=4).instantiate(
                                       parallel_envs=16, seed=seed)

    # Again, use a helper to create a model
    # But because model is owned by the reinforcer, model should not be accessed using this variable
    # but from reinforcer.model property
    model = PolicyGradientModelFactory(backbone=NatureCnnFactory(
        input_width=84, input_height=84, input_channels=4)).instantiate(
            action_space=vec_env.action_space)

    # Reinforcer - an object managing the learning process
    reinforcer = OnPolicyIterationReinforcer(
        device=device,
        settings=OnPolicyIterationReinforcerSettings(
            discount_factor=0.99,
            batch_size=256,
        ),
        model=model,
        algo=A2CPolicyGradient(entropy_coefficient=0.01,
                               value_coefficient=0.5,
                               max_grad_norm=0.5),
        env_roller=StepEnvRoller(
            environment=vec_env,
            device=device,
            number_of_steps=5,
            discount_factor=0.99,
        ))

    # Model optimizer
    optimizer = optim.RMSprop(reinforcer.model.parameters(),
                              lr=7.0e-4,
                              eps=1e-3)

    # Overall information store for training information
    training_info = TrainingInfo(
        metrics=[
            EpisodeRewardMetric(
                'episode_rewards'),  # Calculate average reward from episode
        ],
        callbacks=[StdoutStreaming()
                   ]  # Print live metrics every epoch to standard output
    )

    # A bit of training initialization bookkeeping...
    training_info.initialize()
    reinforcer.initialize_training(training_info)
    training_info.on_train_begin()

    # Let's make 100 batches per epoch to average metrics nicely
    num_epochs = int(1.1e7 / (5 * 16) / 100)

    # Normal handrolled training loop
    for i in range(1, num_epochs + 1):
        epoch_info = EpochInfo(training_info=training_info,
                               global_epoch_idx=i,
                               batches_per_epoch=100,
                               optimizer=optimizer)

        reinforcer.train_epoch(epoch_info)

    training_info.on_train_end()
Ejemplo n.º 3
0
def test_prioritized_dqn_breakout():
    """
    Simple 1 iteration of DQN prioritized replay breakout
    """
    device = torch.device('cpu')
    seed = 1001

    # Set random seed in python std lib, numpy and pytorch
    set_seed(seed)

    # Only single environment for DQN
    env = ClassicAtariEnv('BreakoutNoFrameskip-v4').instantiate(seed=seed)

    # Again, use a helper to create a model
    # But because model is owned by the reinforcer, model should not be accessed using this variable
    # but from reinforcer.model property
    model_factory = QModelFactory(backbone=NatureCnnFactory(
        input_width=84, input_height=84, input_channels=4))

    # Reinforcer - an object managing the learning process
    reinforcer = BufferedSingleOffPolicyIterationReinforcer(
        device=device,
        settings=BufferedSingleOffPolicyIterationReinforcerSettings(
            batch_rollout_rounds=4,
            batch_training_rounds=1,
            batch_size=32,
            discount_factor=0.99),
        environment=env,
        algo=DeepQLearning(model_factory=model_factory,
                           double_dqn=False,
                           target_update_frequency=10_000,
                           max_grad_norm=0.5),
        model=model_factory.instantiate(action_space=env.action_space),
        env_roller=PrioritizedReplayRollerEpsGreedy(
            environment=env,
            device=device,
            epsilon_schedule=LinearAndConstantSchedule(
                initial_value=1.0, final_value=0.1, end_of_interpolation=0.1),
            batch_size=8,
            buffer_capacity=100,
            priority_epsilon=1.0e-6,
            buffer_initial_size=100,
            frame_stack=4,
            priority_exponent=0.6,
            priority_weight=LinearSchedule(initial_value=0.4, final_value=1.0),
        ),
    )

    # Model optimizer
    optimizer = optim.RMSprop(reinforcer.model.parameters(),
                              lr=2.5e-4,
                              alpha=0.95,
                              momentum=0.95,
                              eps=1e-3)

    # Overall information store for training information
    training_info = TrainingInfo(
        metrics=[
            EpisodeRewardMetric(
                'episode_rewards'),  # Calculate average reward from episode
        ],
        callbacks=[FrameTracker(100_000)
                   ]  # Print live metrics every epoch to standard output
    )

    # A bit of training initialization bookkeeping...
    training_info.initialize()
    reinforcer.initialize_training(training_info)
    training_info.on_train_begin()

    # Let's make 100 batches per epoch to average metrics nicely
    num_epochs = 1

    # Normal handrolled training loop
    for i in range(1, num_epochs + 1):
        epoch_info = EpochInfo(training_info=training_info,
                               global_epoch_idx=i,
                               batches_per_epoch=1,
                               optimizer=optimizer)

        reinforcer.train_epoch(epoch_info, interactive=False)

    training_info.on_train_end()
Ejemplo n.º 4
0
def test_acer_breakout():
    """
    1 iteration of ACER on breakout environment
    """
    device = torch.device('cpu')
    seed = 1001

    # Set random seed in python std lib, numpy and pytorch
    set_seed(seed)

    # Create 16 environments evaluated in parallel in sub processess with all usual DeepMind wrappers
    # These are just helper functions for that
    vec_env = SubprocVecEnvWrapper(ClassicAtariEnv('BreakoutNoFrameskip-v4'),
                                   frame_history=4).instantiate(
                                       parallel_envs=16, seed=seed)

    # Again, use a helper to create a model
    # But because model is owned by the reinforcer, model should not be accessed using this variable
    # but from reinforcer.model property
    model_factory = QPolicyGradientModelFactory(backbone=NatureCnnFactory(
        input_width=84, input_height=84, input_channels=4))

    # Reinforcer - an object managing the learning process
    reinforcer = BufferedMixedPolicyIterationReinforcer(
        device=device,
        settings=BufferedMixedPolicyIterationReinforcerSettings(
            discount_factor=0.99,
            experience_replay=2,
            stochastic_experience_replay=False),
        model=model_factory.instantiate(action_space=vec_env.action_space),
        env=vec_env,
        algo=AcerPolicyGradient(
            model_factory=model_factory,
            entropy_coefficient=0.01,
            q_coefficient=0.5,
            rho_cap=10.0,
            retrace_rho_cap=1.0,
            trust_region=True,
            trust_region_delta=1.0,
            max_grad_norm=10.0,
        ),
        env_roller=ReplayQEnvRoller(environment=vec_env,
                                    device=device,
                                    number_of_steps=12,
                                    discount_factor=0.99,
                                    buffer_capacity=100,
                                    buffer_initial_size=100,
                                    frame_stack_compensation=4),
    )

    # Model optimizer
    optimizer = optim.RMSprop(reinforcer.model.parameters(),
                              lr=7.0e-4,
                              eps=1e-3,
                              alpha=0.99)

    # Overall information store for training information
    training_info = TrainingInfo(
        metrics=[
            EpisodeRewardMetric(
                'episode_rewards'),  # Calculate average reward from episode
        ],
        callbacks=[]  # Print live metrics every epoch to standard output
    )

    # A bit of training initialization bookkeeping...
    training_info.initialize()
    reinforcer.initialize_training(training_info)
    training_info.on_train_begin()

    # Let's make 100 batches per epoch to average metrics nicely
    num_epochs = 1

    # Normal handrolled training loop
    for i in range(1, num_epochs + 1):
        epoch_info = EpochInfo(training_info=training_info,
                               global_epoch_idx=i,
                               batches_per_epoch=1,
                               optimizer=optimizer)

        reinforcer.train_epoch(epoch_info, interactive=False)

    training_info.on_train_end()
Ejemplo n.º 5
0
def qbert_ppo():
    device = torch.device('cuda:0')
    seed = 1001

    # Set random seed in python std lib, numpy and pytorch
    set_seed(seed)

    # Create 16 environments evaluated in parallel in sub processess with all usual DeepMind wrappers
    # These are just helper functions for that
    vec_env = SubprocVecEnvWrapper(ClassicAtariEnv('QbertNoFrameskip-v4'),
                                   frame_history=4).instantiate(
                                       parallel_envs=8, seed=seed)

    # Again, use a helper to create a model
    # But because model is owned by the reinforcer, model should not be accessed using this variable
    # but from reinforcer.model property
    model = StochasticPolicyModelFactory(
        input_block=ImageToTensorFactory(),
        backbone=NatureCnnFactory(
            input_width=84, input_height=84,
            input_channels=4)).instantiate(action_space=vec_env.action_space)

    # Set schedule for gradient clipping.
    cliprange = LinearSchedule(initial_value=0.1, final_value=0.0)

    # Reinforcer - an object managing the learning process
    reinforcer = OnPolicyIterationReinforcer(
        device=device,
        settings=OnPolicyIterationReinforcerSettings(batch_size=256,
                                                     experience_replay=4,
                                                     number_of_steps=128),
        model=model,
        algo=PpoPolicyGradient(entropy_coefficient=0.01,
                               value_coefficient=0.5,
                               max_grad_norm=0.5,
                               discount_factor=0.99,
                               gae_lambda=0.95,
                               cliprange=cliprange),
        env_roller=StepEnvRoller(
            environment=vec_env,
            device=device,
        ))

    # Model optimizer
    optimizer = optim.Adam(reinforcer.model.parameters(),
                           lr=2.5e-4,
                           eps=1.0e-5)

    # Overall information store for training information
    training_info = TrainingInfo(
        metrics=[
            EpisodeRewardMetric(
                'episode_rewards'),  # Calculate average reward from episode
        ],
        callbacks=[
            StdoutStreaming(
            ),  # Print live metrics every epoch to standard output
            FrameTracker(
                1.1e7
            )  # We need frame tracker to track the progress of learning
        ])

    # A bit of training initialization bookkeeping...
    training_info.initialize()
    reinforcer.initialize_training(training_info)
    training_info.on_train_begin()

    # Let's make 10 batches per epoch to average metrics nicely
    # Rollout size is 8 environments times 128 steps
    num_epochs = int(1.1e7 / (128 * 8) / 10)

    # Normal handrolled training loop
    for i in range(1, num_epochs + 1):
        epoch_info = EpochInfo(training_info=training_info,
                               global_epoch_idx=i,
                               batches_per_epoch=10,
                               optimizer=optimizer)

        reinforcer.train_epoch(epoch_info)

    training_info.on_train_end()