def get_net(name): if name == 'densenet121': net = densenet121() elif name == 'densenet161': net = densenet161() elif name == 'densenet169': net = densenet169() elif name == 'googlenet': net = googlenet() elif name == 'inception_v3': net = inception_v3() elif name == 'mobilenet_v2': net = mobilenet_v2() elif name == 'resnet18': net = resnet18() elif name == 'resnet34': net = resnet34() elif name == 'resnet50': net = resnet50() elif name == 'resnet_orig': net = resnet_orig() elif name == 'vgg11_bn': net = vgg11_bn() elif name == 'vgg13_bn': net = vgg13_bn() elif name == 'vgg16_bn': net = vgg16_bn() elif name == 'vgg19_bn': net = vgg19_bn() else: print(f'{name} not a valid model name') sys.exit(0) return net.to(device)
def init_net(self): net_args = { "pretrained": True, "n_input_channels": len(self.kwargs["static"]["imagery_bands"]) } # https://pytorch.org/docs/stable/torchvision/models.html if self.kwargs["net"] == "resnet18": self.model = resnet.resnet18(**net_args) elif self.kwargs["net"] == "resnet34": self.model = resnet.resnet34(**net_args) elif self.kwargs["net"] == "resnet50": self.model = resnet.resnet50(**net_args) elif self.kwargs["net"] == "resnet101": self.model = resnet.resnet101(**net_args) elif self.kwargs["net"] == "resnet152": self.model = resnet.resnet152(**net_args) elif self.kwargs["net"] == "vgg11": self.model = vgg.vgg11(**net_args) elif self.kwargs["net"] == "vgg11_bn": self.model = vgg.vgg11_bn(**net_args) elif self.kwargs["net"] == "vgg13": self.model = vgg.vgg13(**net_args) elif self.kwargs["net"] == "vgg13_bn": self.model = vgg.vgg13_bn(**net_args) elif self.kwargs["net"] == "vgg16": self.model = vgg.vgg16(**net_args) elif self.kwargs["net"] == "vgg16_bn": self.model = vgg.vgg16_bn(**net_args) elif self.kwargs["net"] == "vgg19": self.model = vgg.vgg19(**net_args) elif self.kwargs["net"] == "vgg19_bn": self.model = vgg.vgg19_bn(**net_args) else: raise ValueError("Invalid network specified: {}".format( self.kwargs["net"])) # run type: 1 = fine tune, 2 = fixed feature extractor # - replace run type option with "# of layers to fine tune" if self.kwargs["run_type"] == 2: layer_count = len(list(self.model.parameters())) for layer, param in enumerate(self.model.parameters()): if layer <= layer_count - 5: param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default # get existing number for input features # set new number for output features to number of categories being classified # see: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html if "resnet" in self.kwargs["net"]: num_ftrs = self.model.fc.in_features self.model.fc = nn.Linear(num_ftrs, self.ncats) elif "vgg" in self.kwargs["net"]: num_ftrs = self.model.classifier[6].in_features self.model.classifier[6] = nn.Linear(num_ftrs, self.ncats)
neptune.log_metric('learning_rate', learning_rate) neptune.log_text('pre-trained', str(pretrain_check)) neptune.log_text('model', model_name) neptune.log_text('date_time', date_time) neptune.create_experiment(model_name) NeptuneLog() if model_name == 'vgg11': model = vgg.vgg11(pretrained=pretrain_check) elif model_name == 'vgg11_bn': model = vgg.vgg11_bn(pretrained=pretrain_check) elif model_name == 'vgg13': model = vgg.vgg13(pretrained=pretrain_check) elif model_name == 'vgg13_bn': model = vgg.vgg13_bn(pretrained=pretrain_check) elif model_name == 'vgg16': model = vgg.vgg16(pretrained=pretrain_check) elif model_name == 'vgg16_bn': model = vgg.vgg16_bn(pretrained=pretrain_check) elif model_name == 'vgg19': model = vgg.vgg19(pretrained=pretrain_check) elif model_name == 'vgg19_bn': model = vgg.vgg19_bn(pretrained=pretrain_check) model.eval() model = torch.nn.DataParallel(model).cuda() optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08,
import torch import torch.nn.functional as F from utils import prepare_cifar import tqdm import radam from vgg import vgg13_bn from models import PreActResNet18 from aegleseeker import AegleSeeker from eval_model import eval_model_pgd device = 'cuda:0' model = vgg13_bn() model = AegleSeeker(model).to(device) train_loader, test_loader = prepare_cifar(100, 100) optim = radam.RAdam(model.parameters()) epsilon = 8 / 255 for epoch in range(100): with tqdm.tqdm(train_loader) as train: running_loss = 0.0 running_grad = 0.0 running_acc = 0.0 model.train() for i, (x, y) in enumerate(train): x, y = x.to(device), y.to(device) # x_bu = x.detach().clone() for _ in range(1): x_rg = x.detach().clone().requires_grad_(True) + \ torch.randn_like(x) * epsilon / 2 optim.zero_grad() pred = model(x_rg)
def get_model(args): network = args.network if network == 'vgg11': model = vgg.vgg11(num_classes=args.class_num) elif network == 'vgg13': model = vgg.vgg13(num_classes=args.class_num) elif network == 'vgg16': model = vgg.vgg16(num_classes=args.class_num) elif network == 'vgg19': model = vgg.vgg19(num_classes=args.class_num) elif network == 'vgg11_bn': model = vgg.vgg11_bn(num_classes=args.class_num) elif network == 'vgg13_bn': model = vgg.vgg13_bn(num_classes=args.class_num) elif network == 'vgg16_bn': model = vgg.vgg16_bn(num_classes=args.class_num) elif network == 'vgg19_bn': model = vgg.vgg19_bn(num_classes=args.class_num) elif network == 'resnet18': model = models.resnet18(num_classes=args.class_num) model.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=model.conv1.out_channels, kernel_size=model.conv1.kernel_size, stride=model.conv1.stride, padding=model.conv1.padding, bias=model.conv1.bias) elif network == 'resnet34': model = models.resnet34(num_classes=args.class_num) model.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=model.conv1.out_channels, kernel_size=model.conv1.kernel_size, stride=model.conv1.stride, padding=model.conv1.padding, bias=model.conv1.bias) elif network == 'resnet50': model = models.resnet50(num_classes=args.class_num) model.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=model.conv1.out_channels, kernel_size=model.conv1.kernel_size, stride=model.conv1.stride, padding=model.conv1.padding, bias=model.conv1.bias) elif network == 'resnet101': model = models.resnet101(num_classes=args.class_num) model.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=model.conv1.out_channels, kernel_size=model.conv1.kernel_size, stride=model.conv1.stride, padding=model.conv1.padding, bias=model.conv1.bias) elif network == 'resnet152': model = models.resnet152(num_classes=args.class_num) model.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=model.conv1.out_channels, kernel_size=model.conv1.kernel_size, stride=model.conv1.stride, padding=model.conv1.padding, bias=model.conv1.bias) elif network == 'densenet121': model = densenet.densenet121(num_classes=args.class_num) elif network == 'densenet169': model = densenet.densenet169(num_classes=args.class_num) elif network == 'densenet161': model = densenet.densenet161(num_classes=args.class_num) elif network == 'densenet201': model = densenet.densenet201(num_classes=args.class_num) return model
def __init__(self): super(AM_vgg13, self).__init__() self.net = vgg.vgg13_bn(pretrained=True) self.fc = nn.Linear(1000, 17)
num_workers=4) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=4) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Device: ' + ('gpu' if torch.cuda.is_available() else 'cpu')) device = torch.device('cuda') model = vgg13_bn(tile_size, in_size, selftrain=True, progress=False, num_classes=num_classes) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=0.001) loss_function = nn.MSELoss() scheduler = StepLR(optimizer, step_size=10, gamma=0.3) train_losses, val_losses, train_acc_1, train_acc_3, train_acc_5, val_acc_1, val_acc_3, val_acc_5 = ourTrain( model, train_loader, val_loader, optimizer, loss_function, scheduler, device=device,