def preprocess_image(x, img_width, img_height): img = imresize(x, (img_height, img_width), interp='bicubic').astype('float64') img = vgg16.img_to_vgg(img) img = np.expand_dims(img, axis=0) return img
full_img_width = int(round(args.out_height / float(full_img_height) * full_img_width)) full_img_height = args.out_height b_scale_ratio_width = float(full_b_image.shape[1]) / full_img_width b_scale_ratio_height = float(full_b_image.shape[0]) / full_img_height x = None for scale_i in range(num_scales): scale_factor = (scale_i * step_scale_factor) + min_scale_factor # scale our inputs img_width = int(round(full_img_width * scale_factor)) img_height = int(round(full_img_height * scale_factor)) img_width, img_height = img_width, img_height if x is None: x = np.random.uniform(0, 255, (img_height, img_width, 3)) x = vgg16.img_to_vgg(x) else: # resize the last state zoom_ratio = img_width / float(x.shape[-1]) x = scipy.ndimage.zoom(x, (1, zoom_ratio, zoom_ratio), order=1) img_height, img_width = x.shape[-2:] if a_scale_mode == 'match': a_img_width = img_width a_img_height = img_height elif a_scale_mode == 'none': a_img_width = full_a_image.shape[1] * scale_factor a_img_height = full_a_image.shape[0] * scale_factor else: # should just be 'ratio' a_img_width = full_a_image.shape[1] * scale_factor * b_scale_ratio_width a_img_height = full_a_image.shape[0] * scale_factor * b_scale_ratio_height a_img_width = int(round(args.a_scale * a_img_width))
full_img_width)) full_img_height = args.out_height b_scale_ratio_width = float(full_b_image.shape[1]) / full_img_width b_scale_ratio_height = float(full_b_image.shape[0]) / full_img_height x = None for scale_i in range(num_scales): scale_factor = (scale_i * step_scale_factor) + min_scale_factor # scale our inputs img_width = int(round(full_img_width * scale_factor)) img_height = int(round(full_img_height * scale_factor)) img_width, img_height = img_width, img_height if x is None: x = np.random.uniform(0, 255, (img_height, img_width, 3)) x = vgg16.img_to_vgg(x) else: # resize the last state zoom_ratio = img_width / float(x.shape[-1]) x = scipy.ndimage.zoom(x, (1, zoom_ratio, zoom_ratio), order=1) img_height, img_width = x.shape[-2:] if a_scale_mode == 'match': a_img_width = img_width a_img_height = img_height elif a_scale_mode == 'none': a_img_width = full_a_image.shape[1] * scale_factor a_img_height = full_a_image.shape[0] * scale_factor else: # should just be 'ratio' a_img_width = full_a_image.shape[1] * scale_factor * b_scale_ratio_width a_img_height = full_a_image.shape[ 0] * scale_factor * b_scale_ratio_height