Ejemplo n.º 1
0
    def __getitem__(self, index):

        sid = index // self.scene_size
        pid = index % self.scene_size
        src, tgt, T = self._load_instance(sid, pid)

        #################### Augmentation ###################
        # hard rotation augmentation
        if self.mode == 'train' and not self.opt.no_augmentation:
            if self.opt.model.kpconv:
                tgt, R_aug = pctk.rotate_point_cloud(tgt, max_degree=60)
            else:
                tgt, R_aug = pctk.rotate_point_cloud(tgt)

        _, src = pctk.uniform_resample_np(src, self.opt.model.input_num)
        _, tgt = pctk.uniform_resample_np(tgt, self.opt.model.input_num)
        ##########################################################

        if self.opt.model.flag == 'rotation':
            src = pctk.normalize_pc_np(src)
            tgt = pctk.normalize_pc_np(tgt)
            R, R_label = label_relative_rotation_np(self.anchors, T)
            data = {'src': torch.from_numpy(src.astype(np.float32)),\
                'tgt': torch.from_numpy(tgt.astype(np.float32)),\
                'T': torch.from_numpy(T.astype(np.float32)),\
                'R': torch.from_numpy(R.astype(np.float32)),\
                'R_label': torch.Tensor([R_label]).long()}
        else:
            data = {'src': torch.from_numpy(src.astype(np.float32)),\
                'tgt': torch.from_numpy(tgt.astype(np.float32)),\
                'T': torch.from_numpy(T.astype(np.float32)),\
                'fn': "None"}

        return data
Ejemplo n.º 2
0
    def __getitem__(self, index):
        data = sio.loadmat(self.all_data[index])
    
        if self.mode == 'train':
            _, pc = pctk.uniform_resample_np(data['pc'], self.opt.model.input_num)
        else:
            pc = data['pc']
    
        pc = p3dtk.normalize_np(pc.T)
        pc = pc.T

        R = np.eye(3)
        R_label = 29

        if not self.opt.no_augmentation:
            if 'R' in data.keys() and self.mode != 'train':
                pc, R = pctk.rotate_point_cloud(pc, data['R'])
            else:
                pc, R = pctk.rotate_point_cloud(pc)

            _, R_label, R0 = rotation_distance_np(R, self.anchors)

            if self.flag == 'rotation':
                R = R0

        return {'pc':torch.from_numpy(pc.astype(np.float32)),
                'label':torch.from_numpy(data['label'].flatten()).long(),
                'fn': data['name'][0],
                'R': R,
                'R_label': torch.Tensor([R_label]).long(),
               }
Ejemplo n.º 3
0
    def __getitem__(self, index):
        meta = self.kptfiles[index]
        choice = np.random.choice(np.arange(meta.indices.shape[0]), self.npt)
        kpts = meta.indices[choice].astype(np.int32)
        pcdA = o3d.io.read_point_cloud(meta.pathA)
        pcdB = o3d.io.read_point_cloud(meta.pathB)
        rawA, pcdA_down, normalA = radius_ball_search_o3d(
            pcdA, kpts[:, 0], self.search_radius, self.voxel_size,
            self.use_normals)
        rawB, pcdB_down, normalB = radius_ball_search_o3d(
            pcdB, kpts[:, 1], self.search_radius, self.voxel_size,
            self.use_normals)

        ################################33
        # pcdA = pcdA_down
        # pcdB = pcdB_down
        #####################################

        pcdA = np.asarray(pcdA.points).astype(np.float32)
        pcdB = np.asarray(pcdB.points).astype(np.float32)

        # [nptxNx3]
        inputA = []
        inputB = []

        # preprocessing and augmentation
        T = RigidMatrix(meta.poseA).R.T @ RigidMatrix(meta.poseB).R

        # T = T.R
        # T = np.identity(4)

        self.R_aug_src = None
        self.R_aug_tgt = None
        if not self.opt.no_augmentation:
            _, self.R_aug_src = pctk.rotate_point_cloud(None, max_degree=30)
            _, self.R_aug_tgt = pctk.rotate_point_cloud(None, max_degree=30)
            _, pcdA = pctk.rotate_point_cloud(pcdA, self.R_aug_src)
            _, pcdB = pctk.rotate_point_cloud(pcdB, self.R_aug_tgt)
            # T = ?

        # if self.use_normals:
        #     for pca,pcb,na,nb in zip(rawA, rawB, normalA, normalB):
        #         inputA.append(self._preprocess(pca,self.R_aug_src,na))
        #         inputB.append(self._preprocess(pcb,self.R_aug_tgt,nb))
        # else:
        for pca, pcb in zip(rawA, rawB):
            inputA.append(self._preprocess(pca, self.R_aug_src))
            inputB.append(self._preprocess(pcb, self.R_aug_tgt))

        inputA = np.array(inputA)
        inputB = np.array(inputB)

        data = {'src': torch.from_numpy(inputA.astype(np.float32)),\
                'tgt': torch.from_numpy(inputB.astype(np.float32)),\
                'frag_src': pcdA,\
                'frag_tgt': pcdB,\
                'T': torch.from_numpy(T.astype(np.float32)),\
                'fn': meta.id}
        return data
Ejemplo n.º 4
0
 def _preprocess(self, pc, R_aug=None, n=None):
     idx, pc = pctk.uniform_resample_np(pc, self.input_num)
     if n is not None:
         n = n[idx]
     if R_aug is not None:
         # rotational augmentation
         pc, _ = pctk.rotate_point_cloud(pc, R_aug)
         if n is not None:
             n, _ = pctk.rotate_point_cloud(n, R_aug)
     if n is not None:
         pc = np.concatenate([pc,n],axis=1)
     return pc
Ejemplo n.º 5
0
    def __getitem__(self, index):
        # data = sio.loadmat(self.all_data[index])
        data = np.load(self.all_data[index])
        # _, pc = pctk.uniform_resample_np(data['pc'], self.opt.model.input_num)


        # [10000, 3], the dimension should be correct according to the comments
        _, pc = pctk.uniform_resample_np(data['points'], self.opt.model.input_num)

        pc = p3dtk.normalize_np(pc.T)
        pc = pc.T

        R = np.eye(3)
        R_label = 29

        if not self.opt.no_augmentation:

            # ###################### HACK #########################
            # ridx = np.random.randint(0, high=self.anchors.shape[0])
            # R = self.anchors[ridx]
            # pcR, _ = pctk.rotate_point_cloud(pc, R)
            #######################################################

            if 'R' in data.keys() and self.mode != 'train':
                pc, R = pctk.rotate_point_cloud(pc, data['R'])
            else:
                pc, R = pctk.rotate_point_cloud(pc)

            # if self.mode == 'test':
            #     data['R'] = R
            #     output_path = os.path.join(self.dataset_path, data['cat'][0], 'testR')
            #     os.makedirs(output_path,exist_ok=True)
            #     sio.savemat(os.path.join(output_path, data['name'][0] + '.mat'), data)

            _, R_label, R0 = rotation_distance_np(R, self.anchors)

            if self.flag == 'rotation':
                R = R0

        return {'pc':torch.from_numpy(pc.astype(np.float32)),
                'label':torch.from_numpy(data['label'].flatten()).long(),
                # 'fn': data['name'][0],
                'R': R,
                'R_label': torch.Tensor([R_label]).long(),
               }
Ejemplo n.º 6
0
    def __getitem__(self, index):
        # data = sio.loadmat(self.all_data[index])
        data = np.load(self.all_data[index])
        # _, pc = pctk.uniform_resample_np(data['pc'], self.opt.model.input_num)

        # [10000, 3], the dimension should be correct according to the comments
        _, pc = pctk.uniform_resample_np(data['points'], self.opt.model.input_num)

        # normalization
        pc = p3dtk.normalize_np(pc.T)
        pc = pc.T

        # R = np.eye(3)
        # R_label = 29

        # source shape
        # if 'R' in data.keys() and self.mode != 'train':
        #     pc_src, R_src = pctk.rotate_point_cloud(pc, data['R'])
        # else:
        #     pc_src, R_src = pctk.rotate_point_cloud(pc)

        # Rotated point cloud, rotation matrix
        pc_src, R_src = pctk.rotate_point_cloud(pc)
        # target shape

        # pc_tgt, R_tgt = pctk.rotate_point_cloud(pc)
        pc_tgt = pc

        # if self.mode == 'test':
        #     data['R'] = R
        #     output_path = os.path.join(self.dataset_path, data['cat'][0], 'testR')
        #     os.makedirs(output_path,exist_ok=True)
        #     sio.savemat(os.path.join(output_path, data['name'][0] + '.mat'), data)
        # _, R_label, R0 = rotation_distance_np(R, self.anchors)

        # T = R_src @ R_tgt.T
        T = R_src # @ R_tgt.T

        # RR_regress = np.einsum('abc,bj,ijk -> aick', self.anchors, T, self.anchors)
        # R_label = np.argmax(np.einsum('abii->ab', RR_regress),axis=1)
        # idxs = np.vstack([np.arange(R_label.shape[0]), R_label]).T
        # R = RR_regress[idxs[:,0], idxs[:,1]]
        R, R_label = label_relative_rotation_np(self.anchors, T)
        pc_tensor = np.stack([pc_src, pc_tgt])

        return {'pc':torch.from_numpy(pc_tensor.astype(np.float32)),
                # 'fn': data['name'][0],
                'T' : torch.from_numpy(T.astype(np.float32)),
                'R': torch.from_numpy(R.astype(np.float32)),
                'R_label': torch.Tensor([R_label]).long(),
               }