Ejemplo n.º 1
0
def main():
    video = VideoCapture(video_sources.video_6)
    work_area = WorkAreaView(video_sources.video_6_work_area_markers)

    vc = VideoController(10, 'pause')
    video_wnd, = Wnd.create('video')
    # h_wnd, s_wnd, v_wnd = Wnd.create('H', 'S', 'V')
    # L_wnd, a_wnd, b_wnd = Wnd.create('L', 'a', 'b')

    frames_iter = work_area.skip_non_area(video.frames())
    for frame, _ in frames_iter:
        # hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        # h_wnd.imshow(hsv[:, :, 0])
        # s_wnd.imshow(hsv[:, :, 1])
        # v_wnd.imshow(hsv[:, :, 2])

        # lab = cv2.cvtColor(frame, cv2.COLOR_BGR2Lab)
        # L_wnd.imshow(lab[:, :, 0])
        # a_wnd.imshow(lab[:, :, 1])
        # b_wnd.imshow(lab[:, :, 2])

        vis_img = utils.put_frame_pos(frame, video.frame_pos(), xy=(2, 55))
        video_wnd.imshow(vis_img)

        if vc.wait_key() == 27: break

    video.release()
Ejemplo n.º 2
0
def main():
    video = VideoCapture(video_sources.video_2)

    frame = video.read()
    backSubtractor = BackgroundSubtractorAVG(0.2, denoise(frame))

    for frame in video.frames():
        with utils.timeit_context():
            frame = denoise(frame)
            foreGround = backSubtractor.getForeground(frame)
            # Apply thresholding on the background and display the resulting mask
            ret, mask = cv2.threshold(foreGround, 15, 255, cv2.THRESH_BINARY)

        cv2.imshow('input', frame)
        cv2.imshow('foreground', foreGround)
        # Note: The mask is displayed as a RGB image, you can
        # display a grayscale image by converting 'foreGround' to
        # a grayscale before applying the threshold.
        cv2.imshow('mask', mask)

        if cv2.waitKey(10) & 0xFF == 27:
            break

    video.release()
    cv2.destroyAllWindows()
Ejemplo n.º 3
0
def main():
    video = VideoCapture(video_sources.video_2)
    workArea = WorkAreaView(video_sources.video_2_work_area_markers)

    vc = VideoController(10, 'pause')
    (video_wnd, bin_diff_wnd, gray_diff_wnd, colorDiffWnd,
     learned_BG_wnd) = Wnd.create('video', 'binary diff', 'gray diff',
                                  'color diff', 'Learned BG')
    colorAbsDiffWnd = Wnd('color_abs_diff')
    segmentedWnd = Wnd('segmented')

    segmenter = Segmenter()

    frames_iter = workArea.skip_non_area(video.frames())

    motionDetector = MotionDetector(next(frames_iter)[0], 3)
    backgroundModel = BackgroundModel(15)
    prevBackground = None
    for frame, _ in frames_iter:
        motionDetector.detect(frame)

        if motionDetector.motionEnded():
            # calc fgMask
            mask, gray_diff, color_diff, colorAbsDiff = calcForegroundMask(
                prevBackground, frame)
            # bin_diff_wnd.imshow(resize(mask, 0.5))
            bin_diff_wnd.imshow(cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR))

            # gray_diff_wnd.imshow(resize(gray_diff, .5))
            # colorDiffWnd.imshow(resize(color_diff, .5))
            # colorAbsDiffWnd.imshow(resize(colorAbsDiff, .5))
            markers, objectsCount = segmenter.segment(mask)
            segmentedWnd.imshow(
                resize(Segmenter.markersToDisplayImage(markers, objectsCount),
                       .5))

            backgroundModel = BackgroundModel(15)

        if motionDetector.isSilence():
            backgroundModel.learn(frame, foregroundMask=None)
            learned_BG_wnd.imshow(resize(backgroundModel.learned, .5))

        if motionDetector.motionStarted():
            prevBackground = backgroundModel.learned
            backgroundModel = None
            learned_BG_wnd.imshow(resize(prevBackground, .5))

        # VIS

        vis_img = motionDetector.indicateCurrentState(frame.copy())
        vis_img = utils.put_frame_pos(vis_img, video.frame_pos(), xy=(2, 55))
        video_wnd.imshow(vis_img)
        # bin_diff_wnd.imshow(resize(motionDetector.bin_diff, .5))
        # gray_diff_wnd.imshow(resize(motionDetector.gray_diff, .5))
        # VIS END

        if vc.wait_key() == 27: break

    video.release()
Ejemplo n.º 4
0
def main():
    def roiSelectedEvent(roi, imageRoi, wnd, image):
        if roi is None:
            return
        predictions = predict_on_image(model, None, imageRoi, 0.95)
        cv2.imshow('roi', predictions)

    model = getModel()
    video = VideoCapture(video_sources.video_2)
    vc = VideoController(10, 'pause')
    wnd = Wnd('video', roiSelectedEvent=roiSelectedEvent)
    for frame in video.frames():
        cv2.destroyWindow('roi')
        wnd.imshow(frame)
        if vc.wait_key() == 27: break
Ejemplo n.º 5
0
def main():
    video = VideoCapture(video_sources.video_6)
    work_area = WorkAreaView(video_sources.video_6_work_area_markers)

    vc = VideoController(10, 'pause')
    (video_wnd, bin_diff_wnd, gray_diff_wnd, frame0_diff_wnd,
     learned_BG_wnd) = Wnd.create('video', 'binary diff', 'gray diff',
                                  'diff with frame0', 'Learned BG')

    frames_iter = work_area.skip_non_area(video.frames())

    motion_detector = MotionDetector(next(frames_iter)[0], 3)
    background = BackgroundModel(motion_detector, 15)

    for frame, _ in frames_iter:
        motion_detector.detect(frame)
        if not background.done:
            background.learn()
        else:
            if motion_detector.motion_ended():
                frame0_diff = cv2.absdiff(background.learned, frame)
                gray_of_color_diff = Helper.to_gray(frame0_diff)

                frame0_diff_wnd.imshow(
                    resize(
                        np.hstack(
                            (frame0_diff, Helper.to_bgr(gray_of_color_diff))),
                        .5))

                _, binary = cv2.threshold(gray_of_color_diff, 35, 255,
                                          cv2.THRESH_BINARY)
                cv2.imshow('1 binary', resize(binary, .5))

                # VIS
        if background.done:
            learned_BG_wnd.imshow(resize(background.learned, 1))

        vis_img = motion_detector.put_current_state(frame.copy())
        vis_img = utils.put_frame_pos(vis_img, video.frame_pos(), xy=(2, 55))
        video_wnd.imshow(vis_img)
        # bin_diff_wnd.imshow(resize(motion_detector.bin_diff, .5))
        # gray_diff_wnd.imshow(resize(motion_detector.gray_diff, .5))
        # VIS END

        if vc.wait_key() == 27: break

    video.release()
Ejemplo n.º 6
0
def main():
    feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
    lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

    video = VideoCapture(video_sources.video_2)
    wnd = CvNamedWindow('video')
    vc = VideoController(delay=50)

    prev_gray = None
    po = None
    tracking = False

    for frame in video.frames():
        if tracking:
            frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            # calculate optical flow
            p1, st, err = cv2.calcOpticalFlowPyrLK(prev_gray, frame_gray, p0, None, **lk_params)
            p1 = p1[st == 1]
            # draw the tracks
            for pt in p1:
                a, b = pt.ravel()
                frame = cv2.circle(frame, (a, b), 5, (0, 255, 0), -1)
            prev_gray = frame_gray
            p0 = p1.reshape(-1, 1, 2)

        wnd.imshow(frame)

        key = vc.wait_key()
        if key == 27:
            break
        elif not tracking and key == ord('r'):  # init tracking
            roi = cv2.selectROI('roi', frame)
            cv2.destroyWindow('roi')

            if roi is None or sum(roi) == 0:
                continue

            prev_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            p0 = cv2.goodFeaturesToTrack(prev_gray, mask=roi_mask(prev_gray, roi), **feature_params)
            if p0 is not None and len(p0) > 0:
                tracking = True

    video.release()
Ejemplo n.º 7
0
def main():
    video = VideoCapture(video_sources.video_6)

    diff_wnd = CvNamedWindow('diff')
    mask_wnd = CvNamedWindow('mask')
    input_wnd = CvNamedWindow('input')

    # prev_frame = denoise(video.read())
    prev_frame = cv2.cvtColor(denoise(video.read()), cv2.COLOR_BGR2GRAY)

    vm = VideoController(10)
    diff = None
    for frame in video.frames():
        # with utils.timeit_context('frame processing'):
        #     frame = denoise(frame)
        #     diff = cv2.absdiff(prev_frame, frame, dst=diff)
        #     ret, mask = cv2.threshold(diff, 45, 255, cv2.THRESH_BINARY)
        #     binary_mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
        #     # cn = cv2.countNonZero(binary_mask)
        #     nonzero = cv2.findNonZero(binary_mask)

        with utils.timeit_context('frame processing'):
            frame = denoise(frame)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            diff = cv2.absdiff(prev_frame, gray, dst=diff)
            ret, mask = cv2.threshold(diff, 45, 255, cv2.THRESH_BINARY)
            # cn = cv2.countNonZero(binary_mask)
            nonzero = cv2.findNonZero(mask)

        diff_wnd.imshow(diff)
        mask_wnd.imshow(mask)
        input_wnd.imshow(utils.put_frame_pos(frame.copy(), video.frame_pos()))

        prev_frame = gray

        if not vm.wait_key():
            break

    video.release()
    cv2.destroyAllWindows()