Ejemplo n.º 1
0
    def _generate_triple_candidates(self, n):
        """Generates triple candidates for use in the BeDOZa protocol.

        Returns a deferred that will eventually yield a list of 3n
        shares of type viff.bedoza.shares.BeDOZaShare corresponding to
        n multiplicative tuples. The first n are the a's, then comes n
        b's followed by n c's.
        
        The triples are only candidates because consistency of the
        triples is only half-way guaranteed in the precense of active
        adversaries. More concretely, the triples returned by this
        method are guaranteed - even in the precense of an active
        adversary - to be of the right size. But they may not satisfy
        the equation

            c = a * b.

        """
        self.runtime.increment_pc()

        gen = PartialShareGenerator(self.Zp, self.runtime, self.random,
                                    self.paillier)
        partial_shares = []
        for _ in xrange(2 * n):
            partial_shares.append(
                gen.generate_share(self.random.randint(0,
                                                       self.Zp.modulus - 1)))
        partial_shares_c = self._full_mul(partial_shares[0:n],
                                          partial_shares[n:2 * n])
        full_shares = add_macs(self.runtime, self.Zp, self.u_bound, self.alpha,
                               self.random, self.paillier,
                               partial_shares + partial_shares_c)
        return full_shares
Ejemplo n.º 2
0
    def _generate_triple_candidates(self, n):
        """Generates triple candidates for use in the BeDOZa protocol.

        Returns a deferred that will eventually yield a list of 3n
        shares of type viff.bedoza.shares.BeDOZaShare corresponding to
        n multiplicative tuples. The first n are the a's, then comes n
        b's followed by n c's.
        
        The triples are only candidates because consistency of the
        triples is only half-way guaranteed in the precense of active
        adversaries. More concretely, the triples returned by this
        method are guaranteed - even in the precense of an active
        adversary - to be of the right size. But they may not satisfy
        the equation

            c = a * b.

        """
        self.runtime.increment_pc()
        
        gen = PartialShareGenerator(self.Zp, self.runtime, self.random,
                                    self.paillier)
        partial_shares = []
        for _ in xrange(2 * n):
             partial_shares.append(
                 gen.generate_share(
                     self.random.randint(0, self.Zp.modulus - 1)))
        partial_shares_c = self._full_mul(partial_shares[0: n],
                                          partial_shares[n: 2 * n])
        full_shares = add_macs(self.runtime, self.Zp, self.u_bound, self.alpha,
                               self.random, self.paillier,
                               partial_shares + partial_shares_c)
        return full_shares  
Ejemplo n.º 3
0
def partial_share(random, runtime, Zp, val, paillier=None):
    if not paillier:
        paillier_random = Random(random.getrandbits(128))
        paillier = ModifiedPaillier(runtime, paillier_random)
    share_random = Random(random.getrandbits(128))
    gen = PartialShareGenerator(Zp, runtime, share_random, paillier)
    return gen.generate_share(Zp(val))
Ejemplo n.º 4
0
def partial_share(random, runtime, Zp, val, paillier=None):
    if not paillier:
        paillier_random = Random(random.getrandbits(128))
        paillier = ModifiedPaillier(runtime, paillier_random)
    share_random = Random(random.getrandbits(128))
    gen = PartialShareGenerator(Zp, runtime, share_random, paillier)
    return gen.generate_share(Zp(val))