Ejemplo n.º 1
0
            # Choose labels
            ix = rnd.choice(np.arange(Yk.shape[0]), size=1, p=Wk / np.sum(Wk))

            # One-hot label image
            y[Yk[ix, 0], Yk[ix, 1], k] = True
            z[k, :] = np.array([Yk[ix, 0], Yk[ix, 1], k])

        if vis:

            fn_segs = fn + 'TRUE_scan_p' + str(n + 1) + '_r' + str(r +
                                                                   1) + '.png'
            plot_scan(X[:, :, 0], savefn=fn_segs)

            fn_segs = fn + 'TRUE_segs_p' + str(n + 1) + '_r' + str(r +
                                                                   1) + '.png'
            plot_segmentation(Y, savefn=fn_segs)

        # Shape of X
        H, W, D = X.shape
        '''Scikit's VB GMM'''

        # # Initialize model
        # model = BayesianGaussianMixture(n_components=K,
        #                                 max_iter=max_iter,
        #                                 verbose=3)

        # # Fit model
        # model.fit(X.reshape((-1, 1)))

        # # Segment image
        # Y_h = model.predict(X.reshape((-1, 1))).reshape((H, W))
Ejemplo n.º 2
0
            # Choose labels
            ix = rnd.choice(np.arange(Yk.shape[0]), size=1, p=Wk / np.sum(Wk))

            # One-hot label image
            y[Yk[ix, 0], Yk[ix, 1], k] = True
            z[k, :] = np.array([Yk[ix, 0], Yk[ix, 1], k])

        if vis:

            fn_segs = fn + 'TRUE_scan_p' + str(n + 1) + '_r' + str(r +
                                                                   1) + '.png'
            plot_scan(X[30:-30, 30:-30, 0], savefn=fn_segs)

            fn_segs = fn + 'TRUE_segs_p' + str(n + 1) + '_r' + str(r +
                                                                   1) + '.png'
            plot_segmentation(Y[30:-30, 30:-30], savefn=fn_segs)
        '''Scikit's VB GMM'''

        # Initialize model
        model = BayesianGaussianMixture(n_components=K,
                                        max_iter=max_iter,
                                        verbose=3)

        # Fit model
        model.fit(X.reshape((-1, 1)))

        # Segment image
        Y_h = model.predict(X.reshape((-1, 1))).reshape((H, W))

        # Obtain posteriors
        post = model.predict_proba(X.reshape((-1, 1))).reshape((H, W, K))