Ejemplo n.º 1
0
        def _plot_time_range(times, figname):
            for i, t in enumerate(times):
                vlab.clf()
                cotr = Cotr(t)

                vlab.plot_blue_marble(r=1.0, rotate=t, crd_system=crd_system,
                                      nphi=256, ntheta=128, res=4, lines=True)

                vlab.plot_earth_3d(radius=1.005, crd_system=crd_system,
                                   night_only=True, opacity=0.5)

                mag_north = cotr.transform('sm', crd_system, [0, 0, 1.0])

                vlab.mlab.points3d(*mag_north, scale_factor=0.05, mode='sphere',
                                   color=(0.992, 0.455, 0.0), resolution=32)
                vlab.orientation_axes(line_width=4.0)

                vlab.mlab.text(0.325, 0.95, viscid.format_datetime(t))

                vlab.view(azimuth=0.0, elevation=90.0, distance=5.0,
                          focalpoint=[0, 0, 0])
                vlab.savefig("{0}_eq_{1:06d}.png".format(figname, i))
                vlab.view(azimuth=0.0, elevation=0.0, distance=5.0,
                          focalpoint=[0, 0, 0])
                vlab.savefig("{0}_pole_{1:06d}.png".format(figname, i))
Ejemplo n.º 2
0
def do_test(lines, scalars, show=False, txt=""):
    viscid.logger.info('--> ' + txt)
    title = txt + '\n' + "\n".join(
        textwrap.wrap("scalars = {0}".format(scalars), width=50))

    try:
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt

        vlt.clf()
        vlt.plot_lines(lines, scalars=scalars)
        plt.title(title)
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if show:
            vlt.show()
    except ImportError:
        pass

    try:
        from mayavi import mlab
        vlab, _ = get_mvi_fig()

        vlab.clf()
        vlab.plot_lines3d(lines, scalars=scalars)
        vlab.fancy_axes()
        mlab.text(0.05, 0.05, title)
        vlab.savefig(next_plot_fname(__file__, series='q3'))
        if show:
            vlab.show(stop=True)
    except ImportError:
        pass
Ejemplo n.º 3
0
def run_test(_fld, _seeds, plot2d=True, plot3d=True, title='', show=False,
             **kwargs):
    lines, topo = viscid.calc_streamlines(_fld, _seeds, **kwargs)
    topo_color = viscid.topology2color(topo)

    # downsample lines for plotting
    lines = [line[:, ::8] for line in lines]

    try:
        if not plot2d:
            raise ImportError
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt
        plt.clf()

        vlt.plot2d_lines(lines, scalars=topo_color, symdir='y', marker='^')
        if title:
            plt.title(title)

        plt.savefig(next_plot_fname(__file__, series='2d'))
        if show:
            plt.show()
    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not show,
                             bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        fld_mag = np.log(viscid.magnitude(_fld))
        try:
            # note: mayavi.mlab.mesh can't take color tuples as scalars
            #       so one can't use topo_color on a mesh surface. This
            #       is a limitation of mayavi. To actually plot a specific
            #       set of colors on a mesh, one must use a texture
            mesh = vlab.mesh_from_seeds(_seeds, scalars=topo, opacity=0.6)
            mesh.actor.property.backface_culling = True
        except RuntimeError:
            pass
        vlab.plot_lines(lines, scalars=fld_mag, tube_radius=0.01,
                       cmap='viridis')
        if title:
            vlab.title(title)

        vlab.savefig(next_plot_fname(__file__, series='3d'))
        if show:
            vlab.show()

    except ImportError:
        pass
Ejemplo n.º 4
0
def get_mvi_fig(offscreen=False):
    from viscid.plot import vlab
    try:
        fig = _global_ns['figure']
        vlab.clf()
    except KeyError:
        fig = vlab.figure(size=[1200, 800], offscreen=offscreen)
        _global_ns['figure'] = fig
    return fig
Ejemplo n.º 5
0
def run_test(fld, seeds, plot2d=True, plot3d=True, add_title="",
             view_kwargs=None, show=False):
    interpolated_fld = viscid.interp_trilin(fld, seeds)
    seed_name = seeds.__class__.__name__
    if add_title:
        seed_name += " " + add_title

    try:
        if not plot2d:
            raise ImportError
        from matplotlib import pyplot as plt
        from viscid.plot import vpyplot as vlt
        plt.clf()
        # plt.plot(seeds.get_points()[2, :], fld)
        mpl_plot_kwargs = dict()
        if interpolated_fld.is_spherical():
            mpl_plot_kwargs['hemisphere'] = 'north'
        vlt.plot(interpolated_fld, **mpl_plot_kwargs)
        plt.title(seed_name)

        plt.savefig(next_plot_fname(__file__, series='2d'))
        if show:
            plt.show()
    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not show)
            _global_ns['figure'] = fig

        try:
            mesh = vlab.mesh_from_seeds(seeds, scalars=interpolated_fld)
            mesh.actor.property.backface_culling = True
        except RuntimeError:
            pass

        pts = seeds.get_points()
        p = vlab.points3d(pts[0], pts[1], pts[2], interpolated_fld.flat_data,
                          scale_mode='none', scale_factor=0.02)
        vlab.axes(p)
        vlab.title(seed_name)
        if view_kwargs:
            vlab.view(**view_kwargs)

        vlab.savefig(next_plot_fname(__file__, series='3d'))
        if show:
            vlab.show()
    except ImportError:
        pass
Ejemplo n.º 6
0
def get_mvi_fig():
    from viscid.plot import vlab
    try:
        fig = _global_ns['figure']
        vlab.clf()
    except KeyError:
        if offscreen_vlab is None:
            raise RuntimeError("offscreen_vlab must be set before calling "
                               "get_mvi_fig(...)")
        vlab.mlab.options.offscreen = offscreen_vlab
        fig = vlab.figure(size=[1200, 800])
        _global_ns['figure'] = fig
    return vlab, fig
Ejemplo n.º 7
0
def do_test(lines, scalars, show=False, txt=""):
    viscid.logger.info('--> ' + txt)
    title = txt + '\n' + "\n".join(textwrap.wrap("scalars = {0}".format(scalars),
                                                 width=50))

    try:
        from matplotlib import pyplot as plt
        from viscid.plot import vpyplot as vlt

        vlt.clf()
        vlt.plot_lines(lines, scalars=scalars)
        plt.title(title)
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if show:
            vlt.show()
    except ImportError:
        pass

    try:
        from mayavi import mlab
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not show,
                              bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        vlab.clf()
        vlab.plot_lines3d(lines, scalars=scalars)
        vlab.fancy_axes()
        mlab.text(0.05, 0.05, title)
        vlab.savefig(next_plot_fname(__file__, series='q3'))
        if show:
            vlab.show(stop=True)
    except ImportError:
        pass
Ejemplo n.º 8
0
        def _plot_time_range(times, figname):
            for i, t in enumerate(times):
                vlab.clf()
                cotr = Cotr(t)

                vlab.plot_blue_marble(r=1.0,
                                      rotate=t,
                                      crd_system=crd_system,
                                      nphi=256,
                                      ntheta=128,
                                      res=4,
                                      lines=True)

                vlab.plot_earth_3d(radius=1.005,
                                   crd_system=crd_system,
                                   night_only=True,
                                   opacity=0.5)

                mag_north = cotr.transform('sm', crd_system, [0, 0, 1.0])

                vlab.mlab.points3d(*mag_north,
                                   scale_factor=0.05,
                                   mode='sphere',
                                   color=(0.992, 0.455, 0.0),
                                   resolution=32)
                vlab.orientation_axes(line_width=4.0)

                vlab.mlab.text(0.325, 0.95, viscid.format_datetime(t))

                vlab.view(azimuth=0.0,
                          elevation=90.0,
                          distance=5.0,
                          focalpoint=[0, 0, 0])
                vlab.savefig("{0}_eq_{1:06d}.png".format(figname, i))
                vlab.view(azimuth=0.0,
                          elevation=0.0,
                          distance=5.0,
                          focalpoint=[0, 0, 0])
                vlab.savefig("{0}_pole_{1:06d}.png".format(figname, i))
Ejemplo n.º 9
0
def do_test(lines, scalars, show=False, txt=""):
    viscid.logger.info('--> ' + txt)
    title = txt + '\n' + "\n".join(textwrap.wrap("scalars = {0}".format(scalars),
                                                 width=50))

    try:
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt

        vlt.clf()
        vlt.plot_lines(lines, scalars=scalars)
        plt.title(title)
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if show:
            vlt.show()
    except ImportError:
        pass

    try:
        from mayavi import mlab
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not show,
                              bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        vlab.clf()
        vlab.plot_lines3d(lines, scalars=scalars)
        vlab.fancy_axes()
        mlab.text(0.05, 0.05, title)
        vlab.savefig(next_plot_fname(__file__, series='q3'))
        if show:
            vlab.show(stop=True)
    except ImportError:
        pass
Ejemplo n.º 10
0
def run_test(_fld,
             _seeds,
             plot2d=True,
             plot3d=True,
             title='',
             show=False,
             **kwargs):
    lines, topo = viscid.calc_streamlines(_fld, _seeds, **kwargs)
    topo_color = viscid.topology2color(topo)

    # downsample lines for plotting
    lines = [line[:, ::8] for line in lines]

    try:
        if not plot2d:
            raise ImportError
        from matplotlib import pyplot as plt
        from viscid.plot import vpyplot as vlt
        plt.clf()

        vlt.plot2d_lines(lines, scalars=topo_color, symdir='y', marker='^')
        if title:
            plt.title(title)

        plt.savefig(next_plot_fname(__file__, series='2d'))
        if show:
            plt.show()
    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800],
                              offscreen=not show,
                              bgcolor=(1, 1, 1),
                              fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        fld_mag = np.log(viscid.magnitude(_fld))
        try:
            # note: mayavi.mlab.mesh can't take color tuples as scalars
            #       so one can't use topo_color on a mesh surface. This
            #       is a limitation of mayavi. To actually plot a specific
            #       set of colors on a mesh, one must use a texture
            mesh = vlab.mesh_from_seeds(_seeds, scalars=topo, opacity=0.6)
            mesh.actor.property.backface_culling = True
        except RuntimeError:
            pass
        vlab.plot_lines(lines,
                        scalars=fld_mag,
                        tube_radius=0.01,
                        cmap='viridis')
        if title:
            vlab.title(title)

        vlab.savefig(next_plot_fname(__file__, series='3d'))
        if show:
            vlab.show()

    except ImportError:
        pass
Ejemplo n.º 11
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--notwo", dest='notwo', action="store_true")
    parser.add_argument("--nothree", dest='nothree', action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    # #################################################
    # viscid.logger.info("Testing field lines on 2d field...")
    B = viscid.make_dipole(twod=True)
    line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B,
             line,
             plot2d=plot2d,
             plot3d=plot3d,
             title='2D',
             show=args.show,
             ibound=0.07,
             obound0=obound0,
             obound1=obound1)

    #################################################
    viscid.logger.info("Testing field lines on 3d field...")
    B = viscid.make_dipole(m=[0.2, 0.3, -0.9])
    sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B,
             sphere,
             plot2d=plot2d,
             plot3d=plot3d,
             title='3D',
             show=args.show,
             ibound=0.12,
             obound0=obound0,
             obound1=obound1,
             method=viscid.RK12)

    # The Remainder of this test makes sure higher order methods are indeed
    # more accurate than lower order methods... this could find a bug in
    # the integrators

    ##################################################
    # test accuracy of streamlines in an ideal dipole
    cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
    m = cotr.get_dipole_moment(crd_system='gse')
    seeds = viscid.seed.Sphere((0.0, 0.0, 0.0),
                               2.0,
                               pole=-m,
                               ntheta=25,
                               nphi=25,
                               thetalim=(5, 90),
                               philim=(5, 360),
                               phi_endpoint=False)
    B = viscid.make_dipole(m=m,
                           crd_system='gse',
                           n=(256, 256, 256),
                           l=(-25, -25, -25),
                           h=(25, 25, 25),
                           dtype='f8')

    seeds_xyz = seeds.get_points()
    # seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]
    seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]

    e1_lines, e1_lsps, t_e1 = lines_and_lsps(B,
                                             seeds,
                                             method='euler1',
                                             ibound=1.0,
                                             cotr=cotr)
    rk2_lines, rk2_lsps, t_rk2 = lines_and_lsps(B,
                                                seeds,
                                                method='rk2',
                                                ibound=1.0,
                                                cotr=cotr)
    rk4_lines, rk4_lsps, t_rk4 = lines_and_lsps(B,
                                                seeds,
                                                method='rk4',
                                                ibound=1.0,
                                                cotr=cotr)
    e1a_lines, e1a_lsps, t_e1a = lines_and_lsps(B,
                                                seeds,
                                                method='euler1a',
                                                ibound=1.0,
                                                cotr=cotr)
    rk12_lines, rk12_lsps, t_rk12 = lines_and_lsps(B,
                                                   seeds,
                                                   method='rk12',
                                                   ibound=1.0,
                                                   cotr=cotr)
    rk45_lines, rk45_lsps, t_rk45 = lines_and_lsps(B,
                                                   seeds,
                                                   method='rk45',
                                                   ibound=1.0,
                                                   cotr=cotr)

    def _calc_rel_diff(_lsp, _ideal_lsp, _d):
        _diffs = []
        for _ilsp, _iideal in zip(_lsp, _ideal_lsp.T):
            _a = _ilsp[_d, :]
            _b = _iideal[_d]
            _diffs.append((_a - _b) / _b)
        return _diffs

    lshell_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 0)
    phi_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 1)

    lshell_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 0)
    phi_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 1)

    lshell_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 0)
    phi_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 1)

    lshell_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 0)
    phi_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 1)

    lshell_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 0)
    phi_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 1)

    lshell_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 0)
    phi_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 1)

    methods = [
        'Euler 1', 'Runge Kutta 2', 'Runge Kutta 4', 'Euler 1 Adaptive Step',
        'Runge Kutta 12 Adaptive Step', 'Runge Kutta 45 Adaptive Step'
    ]
    wall_ts = [t_e1, t_rk2, t_rk4, t_e1a, t_rk12, t_rk45]
    all_lines = [
        e1_lines, rk2_lines, rk4_lines, e1a_lines, rk12_lines, rk45_lines
    ]
    all_lshell_diffs = [
        lshell_diff_e1, lshell_diff_rk2, lshell_diff_rk4, lshell_diff_e1a,
        lshell_diff_rk12, lshell_diff_rk45
    ]
    lshell_diffs = [
        np.abs(np.concatenate(lshell_diff_e1, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk2, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk4, axis=0)),
        np.abs(np.concatenate(lshell_diff_e1a, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk12, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk45, axis=0))
    ]
    phi_diffs = [
        np.abs(np.concatenate(phi_diff_e1, axis=0)),
        np.abs(np.concatenate(phi_diff_rk2, axis=0)),
        np.abs(np.concatenate(phi_diff_rk4, axis=0)),
        np.abs(np.concatenate(phi_diff_e1a, axis=0)),
        np.abs(np.concatenate(phi_diff_rk12, axis=0)),
        np.abs(np.concatenate(phi_diff_rk45, axis=0))
    ]
    npts = [len(lsd) for lsd in lshell_diffs]
    lshell_75 = [np.percentile(lsdiff, 75) for lsdiff in lshell_diffs]

    # # 3D DEBUG PLOT:: for really getting under the covers
    # vlab.clf()
    # earth1 = viscid.seed.Sphere((0.0, 0.0, 0.0), 1.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls1 = viscid.xyz2lsrlp(earth1.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth2 = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls2 = viscid.xyz2lsrlp(earth2.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth4 = viscid.seed.Sphere((0.0, 0.0, 0.0), 4.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls4 = viscid.xyz2lsrlp(earth4.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # clim = [2.0, 6.0]
    # vlab.mesh_from_seeds(earth1, scalars=ls1, clim=clim, logscale=True)
    # vlab.mesh_from_seeds(earth2, scalars=ls2, clim=clim, logscale=True, opacity=0.5)
    # vlab.mesh_from_seeds(earth4, scalars=ls2, clim=clim, logscale=True, opacity=0.25)
    # vlab.plot3d_lines(e1_lines, scalars=[_e1_lsp[0, :] for _e1_lsp in e1_lsps],
    #                  clim=clim, logscale=True)
    # vlab.colorbar(title="L-Shell")
    # vlab.show()

    assert lshell_75[1] < lshell_75[0], "RK2 should have less error than Euler"
    assert lshell_75[2] < lshell_75[1], "RK4 should have less error than RK2"
    assert lshell_75[3] < lshell_75[
        0], "Euler 1a should have less error than Euler 1"
    assert lshell_75[4] < lshell_75[
        0], "RK 12 should have less error than Euler 1"
    assert lshell_75[5] < lshell_75[1], "RK 45 should have less error than RK2"

    try:
        if not plot2d:
            raise ImportError
        from matplotlib import pyplot as plt
        from viscid.plot import vpyplot as vlt

        # stats on error for all points on all lines
        _ = plt.figure(figsize=(15, 8))
        ax1 = vlt.subplot(121)
        v = plt.violinplot(lshell_diffs,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(lshell_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.title('L-Shell')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        ax2 = vlt.subplot(122)
        v = plt.violinplot(phi_diffs,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(phi_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax2.get_yaxis().set_visible(False)
        plt.title('Longitude')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        vlt.auto_adjust_subplots()

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # stats for ds for all points on all lines
        _ = plt.figure(figsize=(10, 8))
        ax1 = vlt.subplot(111)

        ds = [
            np.concatenate([
                np.linalg.norm(_l[:, 1:] - _l[:, :-1], axis=0) for _l in lines
            ]) for lines in all_lines
        ]
        v = plt.violinplot(ds,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            stat_txt = format_data_range(ds[i])
            plt.text(xl + 0.01 * (xh - xl), i + 1.15, txt, color=c)
            plt.text(xl + 0.01 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.xscale('log')
        plt.title('Step Size')
        plt.xlabel('Absolute Step Size')
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # random other information
        _ = plt.figure(figsize=(13, 10))

        ## wall time for each method
        vlt.subplot(221)
        plt.scatter(range(len(methods)),
                    wall_ts,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_ts[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Wall Time (s)")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_ts), np.max(wall_ts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## number of points calculated for each method
        vlt.subplot(222)
        plt.scatter(range(len(methods)),
                    npts,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, npts[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Number of Streamline Points Calculated")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(npts), np.max(npts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## Wall time per segment, this should show the overhead of the method
        vlt.subplot(223)
        wall_t_per_seg = np.asarray(wall_ts) / np.asarray(npts)
        plt.scatter(range(len(methods)),
                    wall_t_per_seg,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_t_per_seg[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Wall Time Per Line Segment")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_t_per_seg), np.max(wall_t_per_seg)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        plt.gca().xaxis.set_major_formatter(viscid.plot.mpl_extra.steve_axfmt)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## 75th percentile of l-shell error for each method
        vlt.subplot(224)
        plt.scatter(range(len(methods)),
                    lshell_75,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        plt.yscale('log')

        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, lshell_75[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("75th Percentile of Relative L-Shell Error")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        ymin, ymax = np.min(lshell_75), np.max(lshell_75)
        plt.ylim(0.75 * ymin, 2.5 * ymax)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        vlt.auto_adjust_subplots(subplot_params=dict(wspace=0.25, hspace=0.15))

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800],
                              offscreen=not args.show,
                              bgcolor=(1, 1, 1),
                              fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        for i, method in zip(count(), methods):
            # if i in (3, 4):
            #     next_plot_fname(__file__, series='q3')
            #     print(i, "::", [line.shape[1] for line in all_lines[i]])
            #     # continue
            vlab.clf()
            _lshell_diff = [np.abs(s) for s in all_lshell_diffs[i]]
            vlab.plot3d_lines(all_lines[i], scalars=_lshell_diff)
            vlab.colorbar(title="Relative L-Shell Error (as fraction)")
            vlab.title(method, size=0.5)
            vlab.orientation_axes()
            vlab.view(azimuth=40,
                      elevation=140,
                      distance=80.0,
                      focalpoint=[0, 0, 0])
            vlab.savefig(next_plot_fname(__file__, series='q3'))
            if args.show:
                vlab.show()
    except ImportError:
        pass

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0
def _main():
    f = viscid.load_file('~/dev/work/xi_fte_001/*.3d.*.xdmf')
    time_slice = ':'
    times = np.array([grid.time for grid in f.iter_times(time_slice)])

    # XYZ coordinates of virtual satelites in warped "plasma sheet coords"
    x_sat_psc = np.linspace(-30, 0, 31)  # X (GSE == PSC)
    y_sat_psc = np.linspace(-10, 10, 21)  # Y (GSE == PSC)
    z_sat_psc = np.linspace(-2, 2, 5)  # Z in PSC (z=0 is the plasma sheet)

    # the GSE z location of the virtual satelites in the warped plasma sheet
    # coordinates, so sat_z_gse_ts['x=5j, y=1j, z=0j'] would give the
    # plasma sheet location at x=5.0, y=1.0
    # These fields depend on time because the plasma sheet moves in time
    sat_z_gse_ts = viscid.zeros([times, x_sat_psc, y_sat_psc, z_sat_psc],
                                crd_names='txyz', center='node',
                                name='PlasmaSheetZ_GSE')
    vx_ts = viscid.zeros_like(sat_z_gse_ts)
    bz_ts = viscid.zeros_like(sat_z_gse_ts)

    for itime, grid in enumerate(f.iter_times(time_slice)):
        print("Processing time slice", itime, grid.time)

        gse_slice = 'x=-35j:0j, y=-15j:15j, z=-6j:6j'
        bx = grid['bx'][gse_slice]
        bx_argmin = np.argmin(bx**2, axis=2)
        z_gse = bx.get_crd('z')
        # ps_zloc_gse is the plasma sheet z location along the GGCM grid x/y
        ps_z_gse = viscid.zeros_like(bx[:, :, 0:1])
        ps_z_gse[...] = z_gse[bx_argmin]

        # Note: Here you could apply a gaussian filter to
        #       ps_z_gse[:, :, 0].data in order to smooth the surface
        #       if desired. Scipy / Scikit-Image have some functions
        #       that do this

        # ok, we found the plasma sheet z GSE location on the actual GGCM
        # grid, but we just want a subset of that grid for our virtual
        # satelites, so just interpolate the ps z location to our subset
        ps_z_gse_subset = viscid.interp_trilin(ps_z_gse,
                                               sat_z_gse_ts[itime, :, :, 0:1],
                                               wrap=True)
        # now we know the plasma sheet z location in GSE, and how far
        # apart we want the satelites in z, so put those two things together
        # to get a bunch of satelite locations
        sat_z_gse_ts[itime] = ps_z_gse_subset.data + z_sat_psc.reshape(1, 1, -1)

        # make a seed generator that we can use to fill the vx and bz
        # time series for this instant in time
        sat_loc_gse = sat_z_gse_ts[itime].get_points()
        sat_loc_gse[2, :] = sat_z_gse_ts[itime].data.reshape(-1)

        # slicing the field before doing the interpolation makes this
        # faster for hdf5 data, but probably for other data too
        vx_ts[itime] = viscid.interp_trilin(grid['vx'][gse_slice],
                                            sat_loc_gse,
                                            wrap=False
                                            ).reshape(vx_ts.shape[1:])
        bz_ts[itime] = viscid.interp_trilin(grid['bz'][gse_slice],
                                            sat_loc_gse,
                                            wrap=False
                                            ).reshape(bz_ts.shape[1:])

        # 2d plots of the plasma sheet z location to make sure we did the
        # interpolation correctly
        if False:  # pylint: disable=using-constant-test
            from viscid.plot import vpyplot as vlt
            fig, (ax0, ax1) = vlt.subplots(2, 1)  # pylint: disable=unused-variable
            vlt.plot(ps_z_gse, ax=ax0, clim=(-5, 5))
            vlt.plot(ps_z_gse_subset, ax=ax1, clim=(-5, 5))
            vlt.auto_adjust_subplots()
            vlt.show()

        # make a 3d plot of the plasma sheet surface to verify that it
        # makes sense
        if True:  # pylint: disable=using-constant-test
            from viscid.plot import vlab
            fig = vlab.figure(size=(1280, 800), bgcolor=(1, 1, 1),
                              fgcolor=(0, 0, 0))
            vlab.clf()
            # plot the plasma sheet coloured by vx
            # Note: points closer to x = 0 are unsightly since the plasma
            #       sheet criteria starts to fall apart on the flanks, so
            #       just remove the first few rows
            ps_z_gse_tail = ps_z_gse['x=:-2.25j']
            ps_mesh_shape = [3, ps_z_gse_tail.shape[0], ps_z_gse_tail.shape[1]]
            ps_pts = ps_z_gse_tail.get_points().reshape(ps_mesh_shape)
            ps_pts[2, :, :] = ps_z_gse_tail[:, :, 0]
            plasma_sheet = viscid.RectilinearMeshPoints(ps_pts)
            ps_vx = viscid.interp_trilin(grid['vx'][gse_slice], plasma_sheet)
            _ = vlab.mesh_from_seeds(plasma_sheet, scalars=ps_vx)
            vx_clim = (-1400, 1400)
            vx_cmap = 'viridis'
            vlab.colorbar(title='Vx', clim=vx_clim, cmap=vx_cmap,
                          nb_labels=5)
            # plot satelite locations as dots colored by Vx with the same
            # limits and color as the plasma sheet mesh
            sat3d = vlab.points3d(sat_loc_gse[0], sat_loc_gse[1], sat_loc_gse[2],
                                  vx_ts[itime].data.reshape(-1),
                                  scale_mode='none', scale_factor=0.2)
            vlab.apply_cmap(sat3d, clim=vx_clim, cmap=vx_cmap)

            # plot Earth for reference
            cotr = viscid.Cotr(dip_tilt=0.0)  # pylint: disable=not-callable
            vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128,
                                  rotate=cotr, crd_system='mhd')
            vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5,
                               crd_system='gse')
            vlab.view(azimuth=45, elevation=70, distance=35.0,
                      focalpoint=[-9, 3, -1])
            vlab.savefig('plasma_sheet_3d_{0:02d}.png'.format(itime))
            vlab.show()
            try:
                vlab.mlab.close(fig)
            except TypeError:
                pass  # this happens if the figure is already closed

    # now do what we will with the time series... this is not a good
    # presentation of this data, but you get the idea
    from viscid.plot import vpyplot as vlt
    fig, axes = vlt.subplots(4, 4, figsize=(12, 12))
    for ax_row, yloc in zip(axes, np.linspace(-5, 5, len(axes))[::-1]):
        for ax, xloc in zip(ax_row, np.linspace(4, 7, len(ax_row))):
            vlt.plot(vx_ts['x={0}j, y={1}j, z=0j'.format(xloc, yloc)], ax=ax)
            ax.set_ylabel('')
            vlt.plt.title('x = {0:g}, y = {1:g}'.format(xloc, yloc))
    vlt.plt.suptitle('Vx [km/s]')
    vlt.auto_adjust_subplots()
    vlt.show()

    return 0
Ejemplo n.º 13
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--notwo", dest='notwo', action="store_true")
    parser.add_argument("--nothree", dest='nothree', action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    # plot2d = True
    # plot3d = True
    # args.show = True

    img = np.load(os.path.join(sample_dir, "logo.npy"))
    x = np.linspace(-1, 1, img.shape[0])
    y = np.linspace(-1, 1, img.shape[1])
    z = np.linspace(-1, 1, img.shape[2])
    logo = viscid.arrays2field([x, y, z], img)

    if 1:
        viscid.logger.info('Testing Line...')
        seeds = viscid.Line([-1, -1, 0], [1, 1, 2], n=5)
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show)

    if 1:
        viscid.logger.info('Testing Plane...')
        seeds = viscid.Plane([0.0, 0.0, 0.0], [1, 1, 1], [1, 0, 0], 2, 2,
                             nl=160, nm=170, NL_are_vectors=True)
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show)

    if 1:
        viscid.logger.info('Testing Volume...')
        seeds = viscid.Volume([-0.8, -0.8, -0.8], [0.8, 0.8, 0.8],
                              n=[64, 64, 3])
        # note: can't make a 2d plot of the volume w/o a slice
        run_test(logo, seeds, plot2d=False, plot3d=plot3d, add_title="3d",
                 show=args.show)

    if 1:
        viscid.logger.info('Testing Volume (with ignorable dim)...')
        seeds = viscid.Volume([-0.8, -0.8, 0.0], [0.8, 0.8, 0.0],
                              n=[64, 64, 1])
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="2d",
                 show=args.show)

    if 1:
        viscid.logger.info('Testing Spherical Sphere (phi, theta)...')
        seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170,
                              pole=[-1, -1, -1], theta_phi=False)
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT",
                 show=args.show)

    if 1:
        viscid.logger.info('Testing Spherical Sphere (theta, phi)...')
        seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170,
                              pole=[-1, -1, -1], theta_phi=True)
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP",
                 show=args.show)

    if 1:
        viscid.logger.info('Testing Spherical Cap (phi, theta)...')
        seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80,
                                    pole=[-1, -1, -1], theta_phi=False)
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT",
                 view_kwargs=dict(azimuth=180, elevation=180), show=args.show)

    if 1:
        viscid.logger.info('Testing Spherical Cap (theta, phi)...')
        seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80,
                                    pole=[-1, -1, -1], theta_phi=True)
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP",
                 view_kwargs=dict(azimuth=180, elevation=180), show=args.show)

    if 1:
        viscid.logger.info('Testing Spherical Patch...')
        seeds = viscid.SphericalPatch(p0=[0, 0, 0], p1=[0, -0, -1],
                                      max_alpha=30.0, max_beta=59.9,
                                      nalpha=65, nbeta=80, r=0.5, roll=45.0)
        run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show)

    if 1:
        viscid.logger.info('Testing RectilinearMeshPoints...')
        f = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[-1].xdmf'))
        slc = 'x=-40f:12f, y=-10f:10f, z=-10f:10f'
        b = f['b'][slc]
        z = b.get_crd('z')
        sheet_iz = np.argmin(b['x']**2, axis=2)
        sheet_pts = b['z=0:1'].get_points()
        sheet_pts[2, :] = z[sheet_iz].reshape(-1)
        isphere_mask = np.sum(sheet_pts[:2, :]**2, axis=0) < 5**2
        day_mask = sheet_pts[0:1, :] > -1.0
        sheet_pts[2, :] = np.choose(isphere_mask, [sheet_pts[2, :], 0])
        sheet_pts[2, :] = np.choose(day_mask, [sheet_pts[2, :], 0])
        nx, ny, _ = b.sshape
        sheet_seed = viscid.RectilinearMeshPoints(sheet_pts.reshape(3, nx, ny))
        vx_sheet = viscid.interp_nearest(f['vx'], sheet_seed)

        try:
            if not plot2d:
                raise ImportError
            from matplotlib import pyplot as plt
            from viscid.plot import vpyplot as vlt
            vlt.clf()
            vlt.plot(vx_sheet, symmetric=True)
            plt.savefig(next_plot_fname(__file__, series='2d'))
            if args.show:
                vlt.show()
        except ImportError:
            pass

        try:
            if not plot3d:
                raise ImportError
            from viscid.plot import vlab
            vlab.clf()
            mesh = vlab.mesh_from_seeds(sheet_seed, scalars=vx_sheet,
                                        clim=(-400, 400))
            vlab.plot_earth_3d(crd_system=b)
            vlab.view(azimuth=+90.0 + 45.0, elevation=90.0 - 25.0,
                      distance=30.0, focalpoint=(-10.0, +1.0, +1.0))

            vlab.title("RectilinearMeshPoints")
            vlab.savefig(next_plot_fname(__file__, series='3d'))
            if args.show:
                vlab.show()

        except ImportError:
            pass

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0
Ejemplo n.º 14
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--notwo", dest='notwo', action="store_true")
    parser.add_argument("--nothree", dest='nothree', action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    # #################################################
    # viscid.logger.info("Testing field lines on 2d field...")
    B = viscid.make_dipole(twod=True)
    line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B, line, plot2d=plot2d, plot3d=plot3d, title='2D', show=args.show,
             ibound=0.07, obound0=obound0, obound1=obound1)

    #################################################
    viscid.logger.info("Testing field lines on 3d field...")
    B = viscid.make_dipole(m=[0.2, 0.3, -0.9])
    sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B, sphere, plot2d=plot2d, plot3d=plot3d, title='3D', show=args.show,
             ibound=0.12, obound0=obound0, obound1=obound1, method=viscid.RK12)

    # The Remainder of this test makes sure higher order methods are indeed
    # more accurate than lower order methods... this could find a bug in
    # the integrators

    ##################################################
    # test accuracy of streamlines in an ideal dipole
    cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
    m = cotr.get_dipole_moment(crd_system='gse')
    seeds = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=25, nphi=25,
                               thetalim=(5, 90), philim=(5, 360), phi_endpoint=False)
    B = viscid.make_dipole(m=m, crd_system='gse', n=(256, 256, 256),
                           l=(-25, -25, -25), h=(25, 25, 25), dtype='f8')

    seeds_xyz = seeds.get_points()
    # seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]
    seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]

    e1_lines, e1_lsps, t_e1 = lines_and_lsps(B, seeds, method='euler1',
                                             ibound=1.0, cotr=cotr)
    rk2_lines, rk2_lsps, t_rk2 = lines_and_lsps(B, seeds, method='rk2',
                                                ibound=1.0, cotr=cotr)
    rk4_lines, rk4_lsps, t_rk4 = lines_and_lsps(B, seeds, method='rk4',
                                                ibound=1.0, cotr=cotr)
    e1a_lines, e1a_lsps, t_e1a = lines_and_lsps(B, seeds, method='euler1a',
                                                ibound=1.0, cotr=cotr)
    rk12_lines, rk12_lsps, t_rk12 = lines_and_lsps(B, seeds, method='rk12',
                                                   ibound=1.0, cotr=cotr)
    rk45_lines, rk45_lsps, t_rk45 = lines_and_lsps(B, seeds, method='rk45',
                                                   ibound=1.0, cotr=cotr)

    def _calc_rel_diff(_lsp, _ideal_lsp, _d):
        _diffs = []
        for _ilsp, _iideal in zip(_lsp, _ideal_lsp.T):
            _a = _ilsp[_d, :]
            _b = _iideal[_d]
            _diffs.append((_a - _b) / _b)
        return _diffs

    lshell_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 0)
    phi_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 1)

    lshell_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 0)
    phi_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 1)

    lshell_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 0)
    phi_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 1)

    lshell_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 0)
    phi_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 1)

    lshell_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 0)
    phi_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 1)

    lshell_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 0)
    phi_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 1)

    methods = ['Euler 1', 'Runge Kutta 2', 'Runge Kutta 4',
               'Euler 1 Adaptive Step', 'Runge Kutta 12 Adaptive Step',
               'Runge Kutta 45 Adaptive Step']
    wall_ts = [t_e1, t_rk2, t_rk4, t_e1a, t_rk12, t_rk45]
    all_lines = [e1_lines, rk2_lines, rk4_lines, e1a_lines, rk12_lines,
                 rk45_lines]
    all_lshell_diffs = [lshell_diff_e1, lshell_diff_rk2, lshell_diff_rk4,
                        lshell_diff_e1a, lshell_diff_rk12, lshell_diff_rk45]
    lshell_diffs = [np.abs(np.concatenate(lshell_diff_e1, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk2, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk4, axis=0)),
                    np.abs(np.concatenate(lshell_diff_e1a, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk12, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk45, axis=0))]
    phi_diffs = [np.abs(np.concatenate(phi_diff_e1, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk2, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk4, axis=0)),
                 np.abs(np.concatenate(phi_diff_e1a, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk12, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk45, axis=0))]
    npts = [len(lsd) for lsd in lshell_diffs]
    lshell_75 = [np.percentile(lsdiff, 75) for lsdiff in lshell_diffs]

    # # 3D DEBUG PLOT:: for really getting under the covers
    # vlab.clf()
    # earth1 = viscid.seed.Sphere((0.0, 0.0, 0.0), 1.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls1 = viscid.xyz2lsrlp(earth1.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth2 = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls2 = viscid.xyz2lsrlp(earth2.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth4 = viscid.seed.Sphere((0.0, 0.0, 0.0), 4.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls4 = viscid.xyz2lsrlp(earth4.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # clim = [2.0, 6.0]
    # vlab.mesh_from_seeds(earth1, scalars=ls1, clim=clim, logscale=True)
    # vlab.mesh_from_seeds(earth2, scalars=ls2, clim=clim, logscale=True, opacity=0.5)
    # vlab.mesh_from_seeds(earth4, scalars=ls2, clim=clim, logscale=True, opacity=0.25)
    # vlab.plot3d_lines(e1_lines, scalars=[_e1_lsp[0, :] for _e1_lsp in e1_lsps],
    #                  clim=clim, logscale=True)
    # vlab.colorbar(title="L-Shell")
    # vlab.show()

    assert lshell_75[1] < lshell_75[0], "RK2 should have less error than Euler"
    assert lshell_75[2] < lshell_75[1], "RK4 should have less error than RK2"
    assert lshell_75[3] < lshell_75[0], "Euler 1a should have less error than Euler 1"
    assert lshell_75[4] < lshell_75[0], "RK 12 should have less error than Euler 1"
    assert lshell_75[5] < lshell_75[1], "RK 45 should have less error than RK2"

    try:
        if not plot2d:
            raise ImportError
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt

        # stats on error for all points on all lines
        _ = plt.figure(figsize=(15, 8))
        ax1 = vlt.subplot(121)
        v = plt.violinplot(lshell_diffs, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(lshell_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.title('L-Shell')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        ax2 = vlt.subplot(122)
        v = plt.violinplot(phi_diffs, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(phi_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax2.get_yaxis().set_visible(False)
        plt.title('Longitude')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        vlt.auto_adjust_subplots()

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # stats for ds for all points on all lines
        _ = plt.figure(figsize=(10, 8))
        ax1 = vlt.subplot(111)

        ds = [np.concatenate([np.linalg.norm(_l[:, 1:] - _l[:, :-1], axis=0)
                              for _l in lines]) for lines in all_lines]
        v = plt.violinplot(ds, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            stat_txt = format_data_range(ds[i])
            plt.annotate(txt, xy=(0.55, i / len(methods) + 0.1), color=c,
                         xycoords='axes fraction')
            plt.annotate(stat_txt, xy=(0.55, i / len(methods) + 0.04), color=c,
                         xycoords='axes fraction')
        ax1.get_yaxis().set_visible(False)
        plt.xscale('log')
        plt.title('Step Size')
        plt.xlabel('Absolute Step Size')
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()


        # random other information
        _ = plt.figure(figsize=(13, 10))

        ## wall time for each method
        vlt.subplot(221)
        plt.scatter(range(len(methods)), wall_ts, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_ts[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Wall Time (s)")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_ts), np.max(wall_ts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## number of points calculated for each method
        vlt.subplot(222)
        plt.scatter(range(len(methods)), npts, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, npts[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Number of Streamline Points Calculated")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(npts), np.max(npts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## Wall time per segment, this should show the overhead of the method
        vlt.subplot(223)
        wall_t_per_seg = np.asarray(wall_ts) / np.asarray(npts)
        plt.scatter(range(len(methods)), wall_t_per_seg, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_t_per_seg[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Wall Time Per Line Segment")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_t_per_seg), np.max(wall_t_per_seg)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        plt.gca().xaxis.set_major_formatter(viscid.plot.mpl_extra.steve_axfmt)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## 75th percentile of l-shell error for each method
        vlt.subplot(224)
        plt.scatter(range(len(methods)), lshell_75, color=colors,
                        s=150, marker='s', edgecolors='none')
        plt.yscale('log')

        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, lshell_75[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("75th Percentile of Relative L-Shell Error")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        ymin, ymax = np.min(lshell_75), np.max(lshell_75)
        plt.ylim(0.75 * ymin, 2.5 * ymax)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        vlt.auto_adjust_subplots(subplot_params=dict(wspace=0.25, hspace=0.15))

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not args.show,
                              bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        for i, method in zip(count(), methods):
            # if i in (3, 4):
            #     next_plot_fname(__file__, series='q3')
            #     print(i, "::", [line.shape[1] for line in all_lines[i]])
            #     # continue
            vlab.clf()
            _lshell_diff = [np.abs(s) for s in all_lshell_diffs[i]]
            vlab.plot3d_lines(all_lines[i], scalars=_lshell_diff)
            vlab.colorbar(title="Relative L-Shell Error (as fraction)")
            vlab.title(method, size=0.5)
            vlab.orientation_axes()
            vlab.view(azimuth=40, elevation=140, distance=80.0,
                      focalpoint=[0, 0, 0])
            vlab.savefig(next_plot_fname(__file__, series='q3'))
            if args.show:
                vlab.show()
    except ImportError:
        pass

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0