Ejemplo n.º 1
0
def save_plot(sequences: Union[NoteSequence, List[NoteSequence]],
              output_dir: Optional[str] = None,
              prefix: str = "sequence",
              **kwargs):
    """
  Writes the sequences as HTML plot files to the "output" directory, with the
  filename pattern "<prefix>_<index>_<date_time>" and "html" as extension.

      :param sequences: a NoteSequence or list of NoteSequence to be saved
      :param output_dir: an optional subdirectory in the output directory
      :param prefix: an optional prefix for each file
      :param kwargs: the keyword arguments to pass to the Plotter instance
  """
    output_dir = os.path.join("output", output_dir) if output_dir else "output"
    os.makedirs(output_dir, exist_ok=True)
    if not isinstance(sequences, list):
        sequences = [sequences]
    for (index, sequence) in enumerate(sequences):
        date_and_time = time.strftime("%Y-%m-%d_%H%M%S")
        filename = f"{prefix}_{index:02}_{date_and_time}.html"
        path = os.path.join(output_dir, filename)
        midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)
        plotter = Plotter(**kwargs)
        plotter.save(midi, path)
        print(f"Generated plot file: {os.path.abspath(path)}")
Ejemplo n.º 2
0
def generate_plot_from_midi(sequence, file_name, file_id):
    # Writes the resulting plot file to the output directory
    date_and_time = time.strftime('%Y-%m-%d_%H%M%S')
    plot_filename = "%s_%s_%s.html" % (file_name, file_id, date_and_time)
    plot_path = os.path.join(
        "/Users/reiners/Dropbox/projects/human-drum-grooves/output",
        plot_filename)
    pretty_midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)
    plotter = Plotter()
    plotter.save(pretty_midi, plot_path)
    print(f"Generated plot file: {os.path.abspath(plot_path)}")
Ejemplo n.º 3
0
def convert_midi_to_image(url):
    file = requests.get(url)
    open('input.mid', 'wb').write(file.content)
    pm = PrettyMIDI("input.mid")
    preset = Preset(plot_width=1000, plot_height=500)
    plotter = Plotter(preset=preset)
    plotter.save(pm, 'imageHtml.html')
    hti = Html2Image()
    hti.screenshot(html_file='imageHtml.html',
                   save_as='image.png',
                   size=(1000, 500))
    return discord.File(
        r'image.png') if os.path.getsize('image.png') <= 16000000 else None
def save_plot(sequences: Union[NoteSequence, List[NoteSequence]], output_dir: Optional[str] = None, prefix: str = "sequence", **kwargs):

    output_dir = os.path.join("output", output_dir) if output_dir else "output"
    os.makedirs(output_dir, exist_ok=True)

    if not isinstance(sequences, list):
        sequences = [sequences]

    for (index, sequence) in enumerate(sequences):

        date_time = time.strftime("%Y-%m-%d_%H%M%S")
        filename = f"{prefix}_{index:02}_{date_time}.html"

        path = os.path.join(output_dir, filename)
        midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)

        plotter = Plotter(**kwargs)
        plotter.save(midi, path)
        print("Generated plot : {}".format(os.path.abspath(path)))
Ejemplo n.º 5
0
def generate(bundle_name: str,
             sequence_generator,
             generator_id: str,
             primer_filename: str = None,
             qpm: float = DEFAULT_QUARTERS_PER_MINUTE,
             total_length_steps: int = 64,
             temperature: float = 1.0,
             beam_size: int = 1,
             branch_factor: int = 1,
             steps_per_iteration: int = 1) -> NoteSequence:
  """Generates and returns a new sequence given the sequence generator.

  Uses the bundle name to download the bundle in the "bundles" directory if it
  doesn't already exist, then uses the sequence generator and the generator id
  to get the generator. Parameters can be provided for the generation phase.
  The MIDI and plot files are written to disk in the "output" folder, with the
  filename pattern "<generator_name>_<generator_id>_<date_time>" with "mid" or
  "html" as extension respectively.

      :param bundle_name: The bundle name to be downloaded and generated with.

      :param sequence_generator: The sequence generator module, which is the
      python module in the corresponding models subfolder.

      :param generator_id: The id of the generator configuration, this is the
      model's configuration.

      :param primer_filename: The filename for the primer, which will be taken
      from the "primers" directory. If left empty, and empty note sequence will
      be used.

      :param qpm: The QPM for the generated sequence. If a primer is provided,
      the primer QPM will be used and this parameter ignored.

      :param total_length_steps: The total length of the sequence, which
      contains the added length of the primer and the generated sequence
      together. This value need to be bigger than the primer length in bars.

      :param temperature: The temperature value for the generation algorithm,
      lesser than 1 is less random (closer to the primer), bigger than 1 is
      more random

      :param beam_size: The beam size for the generation algorithm, a bigger
      branch size means the generation algorithm will generate more sequence
      each iteration, meaning a less random sequence at the cost of more time.

      :param branch_factor: The branch factor for the generation algorithm,
      a bigger branch factor means the generation algorithm will keep more
      sequence candidates at each iteration, meaning a less random sequence
      at the cost of more time.

      :param steps_per_iteration: The number of steps the generation algorithm
      generates at each iteration, a bigger steps per iteration meaning there
      are less iterations in total because more steps gets generated each time.

      :returns The generated NoteSequence
  """

  # Downloads the bundle from the magenta website, a bundle (.mag file) is a
  # trained model that is used by magenta
  mm.notebook_utils.download_bundle(bundle_name, "bundles")
  bundle = mm.sequence_generator_bundle.read_bundle_file(
    os.path.join("bundles", bundle_name))

  # Initialize the generator from the generator id, this need to fit the
  # bundle we downloaded before, and choose the model's configuration.
  generator_map = sequence_generator.get_generator_map()
  generator = generator_map[generator_id](checkpoint=None, bundle=bundle)
  generator.initialize()

  # Gets the primer sequence that is fed into the model for the generator,
  # which will generate a sequence based on this one.
  # If no primer sequence is given, the primer sequence is initialized
  # to an empty note sequence
  if primer_filename:
    primer_sequence = mm.midi_io.midi_file_to_note_sequence(
      os.path.join("primers", primer_filename))
  else:
    primer_sequence = NoteSequence()

  # Gets the QPM from the primer sequence. If it wasn't provided, take the
  # parameters that defaults to Magenta's default
  if primer_sequence.tempos:
    if len(primer_sequence.tempos) > 1:
      raise Exception("No support for multiple tempos")
    qpm = primer_sequence.tempos[0].qpm

  # Calculates the seconds per 1 step, which changes depending on the QPM value
  # (steps per quarter in generators are mostly 4)
  seconds_per_step = 60.0 / qpm / getattr(generator, "steps_per_quarter", 4)

  # Calculates the primer sequence length in steps and time by taking the
  # total time (which is the end of the last note) and finding the next step
  # start time.
  primer_sequence_length_steps = math.ceil(primer_sequence.total_time
                                           / seconds_per_step)
  primer_sequence_length_time = primer_sequence_length_steps * seconds_per_step

  # Calculates the start and the end of the primer sequence.
  # We add a negative delta to the end, because if we don't some generators
  # won't start the generation right at the beginning of the bar, they will
  # start at the next step, meaning we'll have a small gap between the primer
  # and the generated sequence.
  primer_end_adjust = (0.00001 if primer_sequence_length_time > 0 else 0)
  primer_start_time = 0
  primer_end_time = (primer_start_time
                     + primer_sequence_length_time
                     - primer_end_adjust)

  # Calculates the generation time by taking the total time and substracting
  # the primer time. The resulting generation time needs to be bigger than zero.
  generation_length_steps = total_length_steps - primer_sequence_length_steps
  if generation_length_steps <= 0:
    raise Exception("Total length in steps too small "
                    + "(" + str(total_length_steps) + ")"
                    + ", needs to be at least one bar bigger than primer "
                    + "(" + str(primer_sequence_length_steps) + ")")
  generation_length_time = generation_length_steps * seconds_per_step

  # Calculates the generate start and end time, the start time will contain
  # the previously added negative delta from the primer end time.
  # We remove the generation end time delta to end the generation
  # on the last bar.
  generation_start_time = primer_end_time
  generation_end_time = (generation_start_time
                         + generation_length_time
                         + primer_end_adjust)

  # Showtime
  print(f"Primer time: [{primer_start_time}, {primer_end_time}]")
  print(f"Generation time: [{generation_start_time}, {generation_end_time}]")

  # Pass the given parameters, the generator options are common for all models
  generator_options = GeneratorOptions()
  generator_options.args['temperature'].float_value = temperature
  generator_options.args['beam_size'].int_value = beam_size
  generator_options.args['branch_factor'].int_value = branch_factor
  generator_options.args['steps_per_iteration'].int_value = steps_per_iteration
  generator_options.generate_sections.add(
    start_time=generation_start_time,
    end_time=generation_end_time)

  # Generates the sequence, add add the time signature
  # back to the generated sequence
  sequence = generator.generate(primer_sequence, generator_options)

  # Writes the resulting midi file to the output directory
  date_and_time = time.strftime('%Y-%m-%d_%H%M%S')
  generator_name = str(generator.__class__).split(".")[2]
  midi_filename = "%s_%s_%s.mid" % (generator_name, generator_id,
                                    date_and_time)
  midi_path = os.path.join("output", midi_filename)
  mm.midi_io.note_sequence_to_midi_file(sequence, midi_path)
  print(f"Generated midi file: {os.path.abspath(midi_path)}")

  # Writes the resulting plot file to the output directory
  date_and_time = time.strftime('%Y-%m-%d_%H%M%S')
  generator_name = str(generator.__class__).split(".")[2]
  plot_filename = "%s_%s_%s.html" % (generator_name, generator_id,
                                     date_and_time)
  plot_path = os.path.join("output", plot_filename)
  pretty_midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)
  plotter = Plotter()
  plotter.save(pretty_midi, plot_path)
  print(f"Generated plot file: {os.path.abspath(plot_path)}")

  return sequence
Ejemplo n.º 6
0
class SequenceLooper(threading.Thread):
  def __init__(self,
               name: str,
               bar_start_event,
               action_server: ActionServer,
               midi_hub,
               bundle_name: str,
               config_name: str,
               timing: Timing,
               midi_channel: int = 1,
               bar_per_loop: int = 2):
    super(SequenceLooper, self).__init__()
    self.name = name
    self._stop_signal = False
    self._bar_start_event = bar_start_event
    self._action_server = action_server
    self._midi_hub = midi_hub
    self._bundle_filename = bundle_name + ".mag"
    self._config_name = config_name
    self._timing = timing
    self._midi_channel = midi_channel
    self._bar_per_loop = bar_per_loop
    model_dir = os.path.join("output", "models")
    if not os.path.exists(model_dir):
      os.makedirs(model_dir)
    self._output_plot = os.path.join("output", "models", self.name + ".html")
    self._output_midi = os.path.join("output", "models", self.name + ".mid")
    self._plotter = Plotter(plot_max_length_bar=bar_per_loop,
                            live_reload=True,
                            preset_name="PRESET_SMALL")

  def stop(self):
    self._stop_signal = True

  def run(self):
    sequence = music_pb2.NoteSequence()
    player = self._midi_hub.start_playback(sequence, allow_updates=True)
    player._channel = self._midi_channel

    pretty_midi = pm.PrettyMIDI()
    pretty_midi.instruments.append(pm.Instrument(0))

    # Wait for the dreamer and store the time with the delta
    wall_start_time = time.time()
    self._bar_start_event.wait()

    bar_count = 0
    while not self._stop_signal:
      # Number of seconds we should be at the beginning of this loop
      expected_start_time = self._timing.get_expected_start_time(bar_count)
      # Number of actual seconds since we started this thread from wall clock,
      # which is smaller then the expected start time
      # The difference is between: the actual wakeup time and the expected
      # (calculated) start time. By keeping this we can adjust the sequence
      # according to the drift.
      diff_time = self._timing.get_diff_time(wall_start_time, bar_count)

      tf.logging.debug("Playing " + str(self._timing.get_timing_args(
        wall_start_time, bar_count)))

      # Player
      sequence_adjusted = music_pb2.NoteSequence()
      sequence_adjusted.CopyFrom(sequence)
      sequence_adjusted = adjust_sequence_times(sequence_adjusted,
                                                wall_start_time - diff_time)
      player.update_sequence(sequence_adjusted, start_time=expected_start_time)

      # Plotter
      pretty_midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)
      self._plotter.save(pretty_midi, self._output_plot)
      pretty_midi.write(self._output_midi)

      # Sets timing
      seconds_per_bar = self._timing.get_seconds_per_bar()
      seconds_per_loop = self._bar_per_loop * seconds_per_bar
      loop_start_time = expected_start_time
      loop_end_time = loop_start_time + seconds_per_loop
      generation_start_time = loop_end_time
      generation_end_time = generation_start_time + seconds_per_loop

      action = self._action_server.context.get(self.name, None)

      tf.logging.debug(str(action) + " " + str([
        ("expected_start_time", expected_start_time),
        ("loop_start_time", loop_start_time),
        ("loop_end_time", loop_end_time),
        ("generation_start_time", generation_start_time),
        ("generation_end_time", generation_end_time)]))

      if not action:
        pass
      elif action is ActionType.LOOP:
        sequence = sequences.loop(sequence,
                                  loop_start_time,
                                  loop_end_time,
                                  seconds_per_loop)
      elif action is ActionType.GENERATE:
        sequence = sequences.generate(sequence,
                                      self.name,
                                      self._bundle_filename,
                                      self._config_name,
                                      generation_start_time,
                                      generation_end_time)
      elif action is ActionType.GENERATE_ONCE:
        sequence = sequences.generate(sequence,
                                      self.name,
                                      self._bundle_filename,
                                      self._config_name,
                                      generation_start_time,
                                      generation_end_time)
        self._action_server.context[self.name] = ActionType.LOOP
      elif action is ActionType.RESET_ONCE:
        sequence = sequences.reset(sequence,
                                   loop_start_time,
                                   loop_end_time,
                                   seconds_per_loop)
        self._action_server.context[self.name] = ActionType.LOOP
      elif action is ActionType.RESET_GENERATE:
        sequence = sequences.reset(sequence,
                                   loop_start_time,
                                   loop_end_time,
                                   seconds_per_loop)
        self._action_server.context[self.name] = ActionType.GENERATE_ONCE
      else:
        raise Exception(f"Unknown action {action}")

      while True:
        # Unlock at the start of the bar
        self._bar_start_event.wait()
        bar_count += 1
        if bar_count % self._bar_per_loop == 0:
          break
Ejemplo n.º 7
0
 def _save_plot(sequence, path):
     midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)
     plotter = Plotter(**plot_kwargs)
     plotter.save(midi, path)
     logger.info(
         self._logging_format.format(file_type="plot", path=path))
Ejemplo n.º 8
0
from visual_midi import Plotter
import magenta.music as mm
import os
import sys
import glob

f = '*.mid'
d = os.getcwd()
for file in glob.glob(os.path.join(d, f)):
    sequence = mm.midi_io.midi_file_to_note_sequence(
        os.path.join("simplemidi", file))
    plot_filename = "%s.html" % (file)
    plot_path = os.path.join("output", plot_filename)
    pretty_midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)
    plotter = Plotter()
    plotter.show(pretty_midi, plot_path)
    plotter.save(pretty_midi, plot_path)
    print("Generated plot file: " + str(os.path.abspath(plot_path)))
def generate(bundle_name: str,
             sequence_generator,
             generator_id: str,
             qpm: float = constants.DEFAULT_QUARTERS_PER_MINUTE,
             primer_filename: str = None,
             condition_on_primer: bool = False,
             inject_primer_during_generation: bool = False,
             total_length_bars: int = 4,
             temperature: float = 1.0,
             beam_size: int = 1,
             branch_factor: int = 1,
             steps_per_iteration: int = 1,
             write_midi_to_disk: bool = False,
             write_plot_to_disk: bool = False) -> music_pb2.NoteSequence:
    """Generates and returns a new sequence given the sequence generator.

  Uses the bundle name to download the bundle in the "bundles" directory if it
  doesn't already exist, then uses the sequence generator and the generator id
  to get the generator. Parameters can be provided for the generation phase.
  The MIDI and plot files can be written to disk.

      :param bundle_name: The bundle name to be downloaded and generated with.

      :param sequence_generator: The sequence generator module, which is the
      python module in the corresponding models subfolder.

      :param generator_id: The id of the generator configuration, this is the
      model's configuration.

      :param qpm: The QPM for the generated sequence. If a primer is provided,
      the primer QPM will be used and this parameter ignored.

      :param primer_filename: The filename for the primer, which will be taken
      from the "primers" directory. If left empty, and empty note sequence will
      be used.

      :param condition_on_primer: https://github.com/tensorflow/magenta/tree/master/magenta/models/polyphony_rnn#generate-a-polyphonic-sequence

      :param inject_primer_during_generation: https://github.com/tensorflow/magenta/tree/master/magenta/models/polyphony_rnn#generate-a-polyphonic-sequence

      :param total_length_bars: The total length of the sequence, which contains
      the added length of the primer and the generated sequence together. This
      value need to be bigger than the primer length in bars.

      :param temperature: The temperature value for the generation algorithm,
      lesser than 1 is less random (closer to the primer), bigger than 1 is
      more random

      :param beam_size: The beam size for the generation algorithm, a bigger
      branch size means the generation algorithm will generate more sequence
      each iteration, meaning a less random sequence at the cost of more time.

      :param branch_factor: The branch factor for the generation algorithm,
      a bigger branch factor means the generation algorithm will keep more
      sequence candidates at each iteration, meaning a less random sequence
      at the cost of more time.

      :param steps_per_iteration: The number of steps the generation algorithm
      generates at each iteration, a bigger steps per iteration meaning there
      are less iterations in total because more steps gets generated each time.

      :param write_midi_to_disk: True to write the resulting sequence to disk as
      a MIDI file in the "output" folder. The filename naming pattern is:
      "GeneratorName_GeneratorId_DateTime.mid".

      :param write_plot_to_disk: True to write the resulting plot to disk as
      a HTML file in the "output" folder. The filename naming pattern is:
      "GeneratorName_GeneratorId_DateTime.html".

      :returns The generated NoteSequence
  """

    # Downloads the bundle from the magenta website, a bundle (.mag file) is a
    # trained model that is used by magenta
    mm.notebook_utils.download_bundle(bundle_name, "bundles")
    bundle = mm.sequence_generator_bundle.read_bundle_file(
        os.path.join("bundles", bundle_name))

    # Initialize the generator from the generator id, this need to fit the
    # bundle we downloaded before, and choose the model's configuration.
    generator_map = sequence_generator.get_generator_map()
    generator = generator_map[generator_id](checkpoint=None, bundle=bundle)
    generator.initialize()

    # Gets the primer sequence that is fed into the model for the generator,
    # which will generate a sequence based on this one.
    # If no primer sequence is given, the primer sequence is initialized
    # to an empty note sequence
    if primer_filename:
        primer_sequence = mm.midi_io.midi_file_to_note_sequence(
            os.path.join("primers", primer_filename))
    else:
        primer_sequence = music_pb2.NoteSequence()

    # Gets the QPM from the primer sequence. If it wasn't provided, take the
    # parameters that defaults to Magenta's default
    if primer_sequence.tempos:
        if len(primer_sequence.tempos) > 1:
            raise Exception("No support for multiple tempos")
        qpm = primer_sequence.tempos[0].qpm
    else:
        qpm = qpm

    # Gets the time signature from the primer sequence. If it wasn't provided,
    # we initialize it to a default 4/4
    if primer_sequence.time_signatures:
        if len(primer_sequence.time_signatures) > 1:
            raise Exception("No support for multiple time signatures")
        primer_time_signature = primer_sequence.time_signatures[0]
    else:
        primer_time_signature = primer_sequence.time_signatures.add()
        primer_time_signature.time = 0
        primer_time_signature.numerator = 4
        primer_time_signature.denominator = 4

    # Calculates the seconds per 1 step, which changes depending on the QPM value
    # (steps per quarter in generators are mostly 4)
    seconds_per_step = 60.0 / qpm / generator.steps_per_quarter

    # Calculate the number of steps per bar, which changes from the time
    # signature. If we have a 3/4 time signature, steps per bar is 12,
    # if 4/4, steps per bar is 16.
    steps_per_quarter_note = constants.DEFAULT_STEPS_PER_QUARTER
    num_steps_per_bar = (primer_time_signature.numerator *
                         steps_per_quarter_note)

    # Calculate how many seconds per bar for the generation time
    seconds_per_bar = num_steps_per_bar * seconds_per_step

    print("Seconds per step: " + str(seconds_per_step))
    print("Steps per bar: " + str(num_steps_per_bar))
    print("Seconds per bar: " + str(seconds_per_bar))

    # Calculates the primer sequence length in bars and time by taking the
    # total time (which is the end of the last note) and finding the next bar
    # start time.
    primer_sequence_length_bars = math.ceil(primer_sequence.total_time /
                                            seconds_per_bar)
    primer_sequence_length_time = primer_sequence_length_bars * seconds_per_bar

    # Calculates the start and the end of the primer sequence.
    # We add a negative delta to the end, because if we don't some generators
    # won't start the generation right at the beginning of the bar, they will
    # start at the next step, meaning we'll have a small gap between the primer
    # and the generated sequence.
    primer_end_adjust = (0.00001 if primer_sequence_length_time > 0 else 0)
    primer_start_time = 0
    primer_end_time = (primer_start_time + primer_sequence_length_time -
                       primer_end_adjust)

    # Calculates the generation time by taking the total time and substracting
    # the primer time. The resulting generation time needs to be bigger than zero.
    generation_length_bars = total_length_bars - primer_sequence_length_bars
    if generation_length_bars <= 0:
        raise Exception("Total length in bars too small " + "(" +
                        str(total_length_bars) + ")" +
                        ", needs to be at least one bar bigger than primer " +
                        "(" + str(primer_sequence_length_bars) + ")")
    generation_length_time = generation_length_bars * seconds_per_bar

    # Calculates the generate start and end time, the start time will contain
    # the previously added negative delta from the primer end time.
    # We remove the generation end time delta to end the generation
    # on the last bar.
    generation_start_time = primer_end_time
    generation_end_time = (generation_start_time + generation_length_time +
                           primer_end_adjust)

    # Showtime
    print("Primer time: [" + str(primer_start_time) + ", " +
          str(primer_end_time) + "]")
    print("Generation time: [" + str(generation_start_time) + ", " +
          str(generation_end_time) + "]")

    # Pass the given parameters, the generator options are common for all models,
    # except for condition_on_primer and no_inject_primer_during_generation
    # which are specific to polyphonic models
    generator_options = generator_pb2.GeneratorOptions()
    generator_options.args['temperature'].float_value = temperature
    generator_options.args['beam_size'].int_value = beam_size
    generator_options.args['branch_factor'].int_value = branch_factor
    generator_options.args[
        'steps_per_iteration'].int_value = steps_per_iteration
    generator_options.args[
        'condition_on_primer'].bool_value = condition_on_primer
    generator_options.args['no_inject_primer_during_generation'].bool_value = (
        not inject_primer_during_generation)
    generator_options.generate_sections.add(start_time=generation_start_time,
                                            end_time=generation_end_time)

    # Generates the sequence. The resulting sequence do not have time signature
    # so we add the same as the primer.
    sequence = generator.generate(primer_sequence, generator_options)
    time_signature = sequence.time_signatures.add()
    time_signature.time = 0
    time_signature.numerator = primer_time_signature.numerator
    time_signature.denominator = primer_time_signature.denominator

    # Writes the resulting midi file to the output directory
    if write_midi_to_disk:
        date_and_time = time.strftime('%Y-%m-%d_%H%M%S')
        generator_name = str(generator.__class__).split(".")[2]
        midi_filename = "%s_%s_%s.mid" % (generator_name, generator_id,
                                          date_and_time)
        midi_path = os.path.join("output", midi_filename)
        mm.midi_io.note_sequence_to_midi_file(sequence, midi_path)
        print("Generated midi file: " + str(os.path.abspath(midi_path)))

    # Writes the resulting plot file to the output directory
    if write_plot_to_disk:
        date_and_time = time.strftime('%Y-%m-%d_%H%M%S')
        generator_name = str(generator.__class__).split(".")[2]
        plot_filename = "%s_%s_%s.html" % (generator_name, generator_id,
                                           date_and_time)
        plot_path = os.path.join("output", plot_filename)
        pretty_midi = mm.midi_io.note_sequence_to_pretty_midi(sequence)
        plotter = Plotter()
        plotter.save(pretty_midi, plot_path)
        print("Generated plot file: " + str(os.path.abspath(plot_path)))

    return sequence