def __init__(self, *args, **kwargs): #default data self.Config = Configuration() self.frame = 0 # default pop init self.population_init() self.pop_tracker = Population_trackers() #destinations vector init self.destinations = initialize_destination_matrix( self.Config.size_pop, 1) self.figure, self.spec, self.ax1, self.ax2 = build_fig(self.Config)
def run(self): '''run simulation''' if self.Config.visualise: self.fig, self.spec, self.ax1, self.ax2, self.tight_bbox = build_fig( self.Config) i = 0 while i < self.Config.simulation_steps: try: self.tstep() except KeyboardInterrupt: print('\nCTRL-C caught, exiting') sys.exit(1) #check whether to end if no infectious persons remain. #check if self.frame is above some threshold to prevent early breaking when simulation #starts initially with no infections. if self.Config.endif_no_infections and self.frame >= 300: if len(self.population[(self.population[:, 6] == 1) | (self.population[:, 6] == 4)]) == 0: i = self.Config.simulation_steps else: i += 1 if self.Config.plot_last_tstep: self.fig_sir, self.spec_sir, self.ax1_sir = build_fig_SIRonly( self.Config) draw_SIRonly(self.Config, self.population, self.pop_tracker, self.frame, self.fig_sir, self.spec_sir, self.ax1_sir) if self.Config.save_data: save_data(self.population, self.pop_tracker) #report outcomes if self.Config.verbose: print('\n-----stopping-----\n') print('total timesteps taken: %i' % self.frame) print('total dead: %i' % len(self.population[self.population[:, 6] == 3])) print('total recovered: %i' % len(self.population[self.population[:, 6] == 2])) print('total infected: %i' % len(self.population[self.population[:, 6] == 1])) print('total infectious: %i' % len(self.population[(self.population[:, 6] == 1) | (self.population[:, 6] == 4)])) print('total unaffected: %i' % len(self.population[self.population[:, 6] == 0])) print('mean distance travelled: %f' % np.mean(self.pop_tracker.distance_travelled))
def __init__(self, *args, **kwargs): # load default config data self.Config = Configuration() self.frame = 0 # initialize default population self.population_init() self.pop_tracker = Population_trackers() # initalise destinations vector self.destinations = initialize_destination_matrix(self.Config.pop_size, 1) self.fig, self.spec, self.ax1, self.ax2 = build_fig(self.Config)
def tstep(self): ''' takes a time step in the simulation ''' if self.frame == 0 and self.Config.visualise: #initialize figure self.fig, self.spec, self.ax1, self.ax2 , self.ax3 = build_fig(self.Config) #check destinations if active #define motion vectors if destinations active and not everybody is at destination active_dests = len(self.population[self.population[:,11] != 0]) # look op this only once if active_dests > 0 and len(self.population[self.population[:,12] == 0]) > 0: self.population = set_destination(self.population, self.destinations) self.population = check_at_destination(self.population, self.destinations, wander_factor = self.Config.wander_factor_dest, speed = self.Config.speed) if active_dests > 0 and len(self.population[self.population[:,12] == 1]) > 0: #keep them at destination 到达dest 以一定范围wander self.population = keep_at_destination(self.population, self.destinations, self.Config.wander_factor) #out of bounds 要把wander的方向朝向修改 防止wander超出边界 #define bounds arrays, excluding those who are marked as having a custom destination if len(self.population[:,11] == 0) > 0: _xbounds = np.array([[self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02]] * len(self.population[self.population[:,11] == 0])) _ybounds = np.array([[self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02]] * len(self.population[self.population[:,11] == 0])) self.population[self.population[:,11] == 0] = out_of_bounds(self.population[self.population[:,11] == 0], _xbounds, _ybounds) #set randoms 最大感染数 只要到达过最大感染数就持续lockdown if self.Config.lockdown: if len(self.pop_tracker.infectious) == 0: mx = 0 else: mx = np.max(self.pop_tracker.infectious) if len(self.population[self.population[:,6] == 1]) >= len(self.population) * self.Config.lockdown_percentage or\ mx >= (len(self.population) * self.Config.lockdown_percentage): #reduce speed of all members of society 使最大速度为0.001 self.population[:,5] = np.clip(self.population[:,5], a_min = None, a_max = 0.001) #set speeds of complying people to 0 遵循lockdown的速度 为0 self.population[:,5][self.Config.lockdown_vector == 0] = 0 else: #update randoms self.population = update_randoms(self.population, self.Config.pop_size, self.Config.speed) else: #update randoms self.population = update_randoms(self.population, self.Config.pop_size, self.Config.speed) #for dead ones: set speed and heading to 0 self.population[:,3:5][self.population[:,6] == 3] = 0 #update positions self.population = update_positions(self.population) #find new infections self.population, self.destinations = infect(self.population, self.Config, self.frame, send_to_location = self.Config.self_isolate, location_bounds = self.Config.isolation_bounds, destinations = self.destinations, location_no = 1, location_odds = self.Config.self_isolate_proportion) #recover and die self.population = recover_or_die(self.population, self.frame, self.Config) #send cured back to population if self isolation active #perhaps put in recover or die class #send cured back to population self.population[:,11][self.population[:,6] == 2] = 0 #compute gdp peoplegdp, businessgdp, governgdp, totalgdp = economical_change(self.population, self.Config) #update population statistics self.pop_tracker.update_counts(self.population, peoplegdp, businessgdp, governgdp, totalgdp) #visualise if self.Config.visualise: draw_tstep(self.Config, self.population, self.pop_tracker, self.frame, self.fig, self.spec, self.ax1, self.ax2,self.ax3) #report stuff to console sys.stdout.write('\r') sys.stdout.write('%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \ dead: %i, of total: %i' %(self.frame, self.pop_tracker.susceptible[-1], self.pop_tracker.infectious[-1], self.pop_tracker.recovered[-1], len(self.population[self.population[:,10] == 1]), self.pop_tracker.fatalities[-1], self.Config.pop_size)) #save popdata if required if self.Config.save_pop and (self.frame % self.Config.save_pop_freq) == 0: save_population(self.population, self.frame, self.Config.save_pop_folder) #run callback self.callback() #update frame self.frame += 1
def tstep(self): if self.frame == 0: self.fig, self.spec, self.ax1, self.ax2 = build_fig(self.Config) xbounds = np.array( [[self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02]] * self.Config.pop_size) ybounds = np.array( [[self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02]] * self.Config.pop_size) self.population = out_of_bounds(self.population, xbounds, ybounds) if self.Config.is_lockdown and self.Config.lockdown == False: if len(self.population[(self.population[:, 6] == 1)] ) >= self.Config.lockdown_percentage * self.Config.pop_size: self.Config.lockdown = True print("\nLockdown Started") left_range = [ self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] / 3 - 0.02 ] mid_range = [ self.Config.xbounds[1] / 3 + 0.02, 2 * self.Config.xbounds[1] / 3 - 0.02 ] right_range = [ 2 * self.Config.xbounds[1] / 3 + 0.02, self.Config.xbounds[1] - 0.02 ] bottom_range = [ self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] / 2 - 0.02 ] top_range = [ self.Config.ybounds[1] / 2 + 0.02, self.Config.ybounds[1] - 0.02 ] left_condition = (self.population[:, 1] <= self.Config.xbounds[1] / 3) mid_condition = ( self.population[:, 1] > self.Config.xbounds[1] / 3) & ( self.population[:, 1] <= 2 * self.Config.xbounds[1] / 3) right_condition = (self.population[:, 1] > 2 * self.Config.xbounds[1] / 3) bottom_condition = (self.population[:, 2] <= self.Config.ybounds[1] / 2) top_condition = (self.population[:, 2] > self.Config.ybounds[1] / 2) if self.Config.lockdown: x_left_bottom = np.array( [left_range] * len(self.population[left_condition & bottom_condition])) y_left_bottom = np.array( [bottom_range] * len(self.population[left_condition & bottom_condition])) self.population[left_condition & bottom_condition] = out_of_bounds( self.population[left_condition & bottom_condition], x_left_bottom, y_left_bottom) x_left_top = np.array( [left_range] * len(self.population[left_condition & top_condition])) y_left_top = np.array( [top_range] * len(self.population[left_condition & top_condition])) self.population[left_condition & top_condition] = out_of_bounds( self.population[left_condition & top_condition], x_left_top, y_left_top) x_mid_bottom = np.array( [mid_range] * len(self.population[mid_condition & bottom_condition])) y_mid_bottom = np.array( [bottom_range] * len(self.population[mid_condition & bottom_condition])) self.population[mid_condition & bottom_condition] = out_of_bounds( self.population[mid_condition & bottom_condition], x_mid_bottom, y_mid_bottom) x_mid_top = np.array( [mid_range] * len(self.population[mid_condition & top_condition])) y_mid_top = np.array( [top_range] * len(self.population[mid_condition & top_condition])) self.population[mid_condition & top_condition] = out_of_bounds( self.population[mid_condition & top_condition], x_mid_top, y_mid_top) x_right_bottom = np.array( [right_range] * len(self.population[right_condition & bottom_condition])) y_right_bottom = np.array( [bottom_range] * len(self.population[right_condition & bottom_condition])) self.population[right_condition & bottom_condition] = out_of_bounds( self.population[right_condition & bottom_condition], x_right_bottom, y_right_bottom) x_right_top = np.array( [right_range] * len(self.population[right_condition & top_condition])) y_right_top = np.array( [top_range] * len(self.population[right_condition & top_condition])) self.population[right_condition & top_condition] = out_of_bounds( self.population[right_condition & top_condition], x_right_top, y_right_top) self.population = update_randoms(self.population, self.Config.pop_size, self.Config.speed) self.population[:, 5][self.population[:, 6] == 3] = 0 self.population = update_positions(self.population) self.population = infect(self.population, self.Config, self.frame) self.population = recover_or_die(self.population, self.frame, self.Config) self.pop_tracker.update_counts(self.population) draw_tstep(self.Config, self.population, self.pop_tracker, self.frame, self.fig, self.spec, self.ax1, self.ax2) self.peak_infections = max( self.peak_infections, len(self.population[self.population[:, 6] == 1])) if self.frame == 50: print('\ninfecting patient zero') self.population[0][6] = 1 self.frame += 1