Ejemplo n.º 1
0
def plotBfield(ax, n, conf):
    data = collectMesh(n, conf, getBfield)

    #magnitude of vectors
    magn = np.sqrt(data[0, :, :]**2 + data[1, :, :]**2 + data[2, :, :]**2)
    print("maximum B: {}".format(np.max(magn)))

    imshow(
        ax,
        #np.log10(magn),
        magn,
        n.getXmin(),
        n.getXmax(),
        n.getYmin(),
        n.getYmax(),
        cmap='inferno_r',
        vmin=magn.min(),
        vmax=magn.max(),
        clip=0.001,
        #vmin = -10.0,
        #vmax =   1.0,
        #clip = -10.0,
    )

    plotQuiver(ax, data, conf)
Ejemplo n.º 2
0
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()
    _, dataloaders, dataset_sizes, class_names = data_preprocess.data_loader()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(config.DEVICE)
            labels = labels.to(config.DEVICE)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images // 2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                visualize.imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)
Ejemplo n.º 3
0
def plotAdaptiveSlice(ax, m, args):

    rfl_max = args["rfl"]
    nx, ny, nz = m.get_size(rfl_max)

    #empty arrays ready
    xx = np.zeros((nx))
    yy = np.zeros((ny))
    ff = np.zeros((nx, ny))

    for i in range(nx):
        x, y, z = m.get_center([i, 0, 0], rfl_max)
        xx[i] = x
    for j in range(ny):
        x, y, z = m.get_center([0, j, 0], rfl_max)
        yy[j] = y

    if args["q"] == "mid":
        q = nz / 2
    else:
        q = args["q"]

    #adapter = pdev.Adapter();
    #adapter.check(m)
    #cells = adapter.cells_to_refine
    #cells = m.get_cells(True)
    #for cid in cells:
    #        rfli = m.get_refinement_level(cid)
    #        indx  = m.get_indices(cid)
    #        i,j,k = indx
    #        if k != q:
    #            continue
    #        if rfli != rfl_max:
    #            continue
    #        val = m[i,j,k, rfli]
    #        ff[i,j] = val

    for i in range(nx):
        for j in range(ny):
            indx = [i, j, q]
            val = m[i, j, q, rfl_max]

            ff[i, j] = val

    imshow(ax,
           ff,
           xx[0],
           xx[-1],
           yy[0],
           yy[-1],
           vmin=0.0,
           vmax=0.02,
           cmap="plasma_r",
           clip=0.0)
    return
Ejemplo n.º 4
0
def plot2d(ax, val, title="", vmin=None, vmax=None, cmap="RdBu"):

    nx, ny = np.shape(val)
    xmin = 0.0
    ymin = 0.0
    xmax = nx
    ymax = ny

    if vmin == None:
        vmin, vmax = np.min(val), np.max(val)
        vminmax = np.maximum(np.abs(vmin), np.abs(vmax))
        vmin = -vminmax
        vmax = vminmax
    elif not (vmin == None) and (vmax == None):
        vmax = np.max(val)

    print("2D: vmin: {} vmax: {} {}".format(vmin, vmax, title))

    im = imshow(
        ax,
        val,
        xmin,
        xmax,
        ymin,
        ymax,
        cmap=cmap,
        vmin=vmin,
        vmax=vmax,
    )

    cb = colorbar(im)

    ax.set_title(title)

    return im, cb
Ejemplo n.º 5
0
def plot2DSlice(ax, vmesh, args):

    rfl_max = args["rfl"]
    mesh = get_leaf_mesh(vmesh, rfl_max)

    #normalizrfl_max
    mesh.ff = mesh.ff / np.max(mesh.ff)

    imshow(ax,
            mesh.ff,
            mesh.xx[0], mesh.xx[-1],
            mesh.yy[0], mesh.yy[-1],
            vmin = 0.0,
            vmax = 1.0,
            cmap = "plasma_r",
            clip = 0.0
            )
    return
Ejemplo n.º 6
0
def plotGradientSlice(ax, m, args):
    rfl = args["rfl"]

    nx, ny, nz = m.get_size(rfl)
    xx, yy, zz = get_guide_grid(m, rfl)
    gg = np.zeros((nx, ny, 2))

    #get 3D gradient cube and flatten into 2D
    ggg = get_gradient(m, rfl)

    if args["q"] == "mid":
        q = nz / 2
        print(q)
    else:
        q = args["q"]
    for i in range(nx):
        for j in range(ny):
            gg[i, j, 0] = ggg[i, j, q, 0]  #vx
            gg[i, j, 1] = ggg[i, j, q, 1]  #vy

    X, Y = np.meshgrid(xx, yy)
    U = gg[:, :, 0]
    V = gg[:, :, 1]

    speed = np.zeros((nx, ny))
    for i in range(nx):
        for j in range(ny):
            speed[i, j] = np.maximum(np.abs(U[i, j]), np.abs(V[i, j]))

    imshow(ax,
           speed / speed.max(),
           xx[0],
           xx[-1],
           yy[0],
           yy[-1],
           vmin=0.0,
           vmax=1.0,
           cmap="plasma_r",
           clip=0.0)

    lw = 5 * speed / speed.max()
    ax.streamplot(X, Y, U, V, density=0.9, color="k", linewidth=lw)
Ejemplo n.º 7
0
def plot2DSliceFlux(ax, vmesh, args):

    mesh = get_leaf_mesh(vmesh, args)

    #normalize
    fmax = np.max(np.abs(mesh.ff))
    mesh.ff = mesh.ff / fmax



    imshow(ax,
            mesh.ff,
            mesh.xx[0], mesh.xx[-1],
            mesh.yy[0], mesh.yy[-1],
            vmin =-1.0,
            vmax = 1.0,
            cmap = "RdBu",
            clip = None
            )
    return
Ejemplo n.º 8
0
def plotIndicator(ax, m, args):
    rfl = args["rfl"]

    nx, ny, nz = m.get_size(rfl)
    xx, yy, zz = get_guide_grid(m, rfl)
    gg = np.zeros((nx, ny))

    #get 3D gradient cube and flatten into 2D
    ggg = get_indicator(m, rfl)

    if args["q"] == "mid":
        q = nz / 2
        print(q)
    else:
        q = args["q"]

    for i in range(nx):
        for j in range(ny):
            gg[i, j] = ggg[i, j, q]

    X, Y = np.meshgrid(xx, yy)

    print("maximum of refining indicator: {}", gg.max())

    gg = np.log10(gg)
    #gg /= gg.max()

    imshow(
        ax,
        gg,
        xx[0],
        xx[-1],
        yy[0],
        yy[-1],
        #vmin = 0.0,
        #vmax = 1.0,
        vmin=-8.0,
        vmax=2.0,
        cmap="plasma_r",
        #clip = 0.0
        clip=-9.0)
Ejemplo n.º 9
0
 def auto_select(self, orig):
     # theta = torch.zeros((n, l, 2, 3)).to(self.centorids.device)
     # self.model.second_stage.theta
     # theta[:, :, 0, 0] = self.centorids[: ,:, 0]
     # theta[:, :, 0, 2] = self.centorids[: ,:, 2]
     # theta[:, :, 1, 1] = self.centorids[: ,:, 1]
     # theta[:, :, 1, 2] = self.centorids[: ,:, 3]
     # Shape (10, 8, 2, 3)
     p_theta = self.model.second_stage.theta
     n, l, _, _ = p_theta.shape
     samples = []
     for i in range(l):
         girds = F.affine_grid(theta=p_theta[:, i], size=[n, 3, 64, 64], align_corners=True)
         samples.append(F.grid_sample(input=orig, grid=girds))
     samples = torch.stack(samples, dim=0)
     # Shape(8, N, 3, 64, 64)
     print("Selected Parts:")
     for i in range(l):
         im_show = torchvision.utils.make_grid(samples[i])
         im_show = im_show.detach().cpu()
         imshow(im_show)
Ejemplo n.º 10
0
 def show_centroids(self, batch, preds):
     # Input img Shape(N, 3, H, W) labels Shape(N,C,H,W) centroids Shape(N, C, 2)
     # img, labels = batch['image'], batch['labels']
     orig = batch['orig']
     labels = batch['labels']
     # pred_arg = preds.argmax(dim=1, keepdim=False)
     # binary_list = []
     # for i in range(preds.shape[1]):
     #     binary = (pred_arg == i).float()
     #     binary_list.append(binary)
     # preds = torch.stack(binary_list, dim=1)
     # pred_centroids = calc_centroid(preds)
     # np_label = labels.detach().cpu().numpy()
     pred_centroids = self.centorids * 512
     true_centroids = calc_centroid(labels[:, 1:9])
     # print("True:")
     # print(true_centroids)
     # print("Prdicts:")
     # print(pred_centroids)
     n = orig.shape[0]
     c = pred_centroids.shape[1]
     image_list = []
     for i in range(n):
         image = TF.to_pil_image(orig[i])
         draw = ImageDraw.Draw(image)
         for j in range(c):
             y_1 = torch.floor(true_centroids[i][j][0]).int().tolist()
             x_1 = torch.floor(true_centroids[i][j][1]).int().tolist()
             draw.point((x_1, y_1), fill=(0, 255, 0))
         # for k in range(c):
         #     y_2 = torch.floor(pred_centroids[i][k][0]).int().tolist()
         #     x_2 = torch.floor(pred_centroids[i][k][1]).int().tolist()
         #     draw.point((x_2, y_2), fill=(255, 0, 0))
         image_list.append(TF.to_tensor(image))
     out = torch.stack(image_list)
     out = torchvision.utils.make_grid(out)
     imshow(out)
Ejemplo n.º 11
0
def plot2DSlice(ax, m, args):

    #mesh = get_mesh(m, args)
    #mesh = get_interpolated_mesh(m, args)
    mesh = get_leaf_mesh(m, args)

    if False:
        imshow(ax,
               mesh.ff,
               mesh.xx[0],
               mesh.xx[-1],
               mesh.yy[0],
               mesh.yy[-1],
               vmin=0.8,
               vmax=1.2,
               cmap="RdYlBu",
               clip=0.0)

        return

    else:

        #normalize
        mesh.ff = mesh.ff / np.max(mesh.ff)

        imshow(ax,
               mesh.ff,
               mesh.xx[0],
               mesh.xx[-1],
               mesh.yy[0],
               mesh.yy[-1],
               vmin=0.0,
               vmax=1.0,
               cmap="plasma_r",
               clip=0.0)
        return
Ejemplo n.º 12
0
def plotXmesh(ax, n, conf, spcs, vdir):

    if vdir == "x":
        fullNvx = np.int(conf.Nvx * (2.0**conf.refinement_level))
        fullNvx = fullNvx if conf.Nvx > 1 else 2*2**conf.refinement_level
        data = -1.0 * np.ones( (conf.Nx*conf.NxMesh, fullNvx) )
    elif vdir == "y":
        fullNvy = np.int(conf.Nvy * (2.0**conf.refinement_level))
        fullNvy = fullNvy if conf.Nvy > 1 else 2*2**conf.refinement_level
        data = -1.0 * np.ones( (conf.Nx*conf.NxMesh, fullNvy) )
    elif vdir == "z":
        fullNvz = np.int(conf.Nvz * (2.0**conf.refinement_level))
        fullNvz = fullNvz if conf.Nvz > 1 else 2*2**conf.refinement_level
        data = -1.0 * np.ones( (conf.Nx*conf.NxMesh, fullNvz) )


    for i in range(conf.Nx):
        cid = n.id(i)
        c = n.get_tile(cid)

        block = c.get_plasma_species(0, spcs)
        for s in range(conf.NxMesh):
            vmesh = block[s,0,0]
            pym = get_leaf_mesh(vmesh, conf.refinement_level)
            
            if vdir == "x":
                sl = xSliceMid(pym) #slice from middle
                data[ i*conf.NxMesh + s, :] = sl

                dx = pym.xx[1]-pym.xx[0]
                vmin = pym.xx[0] -dx/2.0
                vmax = pym.xx[-1]+dx/1.0
            elif vdir == "y":
                sl = ySliceMid(pym) #slice from middle
                data[ i*conf.NxMesh + s, :] = sl

                dx = pym.yy[1]-pym.yy[0]
                vmin = pym.yy[0] -dx/2.0
                vmax = pym.yy[-1]+dx/1.0
            elif vdir == "z":
                sl = zSliceMid(pym) #slice from middle

                dx = pym.zz[1]-pym.zz[0]
                vmin = pym.zz[0] -dx/2.0
                vmax = pym.zz[-1]+dx/1.0

            data[ i*conf.NxMesh + s, :] = sl

    #print(np.max(data))
    data = data/data.max()

    imshow(ax, data,
           n.get_xmin(), n.get_xmax(), 
           vmin, vmax,
           cmap = 'plasma_r',
           vmin =   0.0,
           vmax =   1.0,
           clip =   None,
           )

    if vdir == "x":
        if spcs == 0:
            ax.set_ylabel(r'$v_{x,e}$')
        if spcs == 1:
            ax.set_ylabel(r'$v_{x,p}$')
    if vdir == "y":
        if spcs == 0:
            ax.set_ylabel(r'$v_{y,e}$')
        if spcs == 1:
            ax.set_ylabel(r'$v_{y,p}$')
Ejemplo n.º 13
0
    arrd = arr.diagonal()[0]
    axs[0].plot(xd - np.sqrt(2.0) * xmid, arrd, "b:", alpha=0.6)

    xmin = 0
    ymin = 0
    xmax = conf.NxMesh
    ymax = conf.NyMesh

    im = imshow(
        axs[1],
        arr[:, :, 0],
        xmin,
        xmax,
        ymin,
        ymax,
        cmap='viridis',
        vmin=0,
        vmax=np.max(arr),
        clip=False,
        aspect=1,
    )

    #--------------------------------------------------
    # fft
    nx = conf.NxMesh // 2

    freq = np.fft.fftfreq(conf.NxMesh, d=1.0)

    farr = np.fft.fft2(arr[:, :, 0])
    #farr = np.abs(farr)*np.abs(farr) #power
Ejemplo n.º 14
0
def plot2d_shock_single(
    ax,
    var,
    info,
    title=None,
    vmin=None,
    vmax=None,
    cmap=None,
    clip=None,
):

    #--------------------------------------------------
    # unpack incoming arguments that modify defaults
    args = {}

    #general defaults
    for key in default_values:
        args[key] = default_values[key]

    #overwrite with shock defaults
    try:
        for key in default_shock_values[var]:
            args[key] = default_shock_values[var][key]
    except:
        pass

    #finally, overwrite with user given values
    for key in args:
        try:
            user_val = eval(key)
            if not (user_val == None):
                args[key] = user_val
                print("overwriting {} key with {}".format(key, user_val))
        except:
            pass

    print('--------------------------------------------------')
    print("reading {}".format(info['fields_file']))

    f5F = h5.File(info['fields_file'], 'r')

    # normal singular variables
    if not (args['derived']):
        val = read_var(f5F, var)

    # composite quantities
    else:
        print("building composite variable")

        if var == "bdens":
            val = build_bdens(f5F)
        if var == "edens":
            val = build_edens(f5F)

    #--------------------------------------------------
    # get shape
    nx, ny = np.shape(val)
    #print("nx={} ny={}".format(nx, ny))

    walloc = 5.0
    xmin = -(walloc) / info['skindepth']
    ymin = 0.0
    xmax = (nx - walloc) / info['skindepth']
    ymax = ny / info['skindepth']

    #if winsorize
    if not (args['winsorize_min'] == None) or not (args['winsorize_max']
                                                   == None):
        wvmin, wvmax = np.quantile(
            val, [args['winsorize_min'], 1.0 - args['winsorize_max']])

        if args['vmin'] == None:
            args['vmin'] = wvmin
        if args['vmax'] == None:
            args['vmax'] = wvmax
    else:
        # else set vmin and vmax using normal min/max
        if args['vmin'] == None:
            args['vmin'] = np.min(val)
        if args['vmax'] == None:
            args['vmax'] = np.max(val)

    # make color limits symmetric
    if args['vsymmetric']:
        vminmax = np.maximum(np.abs(args['vmin']), np.abs(args['vmax']))
        args['vmin'] = -vminmax
        args['vmax'] = vminmax

    # finally, re-check that user did not give vmin/vmax
    args['vmin'] = vmin if not (vmin == None) else args['vmin']
    args['vmax'] = vmax if not (vmax == None) else args['vmax']

    #nor the project default
    args['vmin'] = default_shock_values[var]['vmin'] if not (
        vmin == None) else args['vmin']
    args['vmax'] = default_shock_values[var]['vmax'] if not (
        vmax == None) else args['vmax']

    #--------------------------------------------------
    # print all options
    print("--- {} ---".format(var))
    for key in args:
        if not (key == None):
            print(" setting {}: {}".format(key, args[key]))

    #--------------------------------------------------

    im = imshow(
        ax,
        val,
        xmin,
        xmax,
        ymin,
        ymax,
        cmap=args['cmap'],
        vmin=args['vmin'],
        vmax=args['vmax'],
        clip=args['clip'],
        aspect=args['aspect'],
    )

    #cax, cb = colorbar(im)

    #--------------------------------------------------
    # colorbar
    #ax.set_xlim((600.0, 900.0))
    #ax.set_ylim((300.0, 600.0))

    if do_dark:
        plt.subplots_adjust(left=0.10, bottom=0.05, right=0.90, top=0.97)
    else:
        ax.set_xlabel(r"$x$ $(c/\omega_p)$")
        ax.set_ylabel(r"$y$ $(c/\omega_p)$")
        plt.subplots_adjust(left=0.15, bottom=0.10, right=0.87, top=0.97)

    #axleft    = 0.10
    #axbottom  = 0.06
    #axright   = 0.96
    #axtop     = 0.92
    wskip = 0.0
    pad = 0.01
    pos = ax.get_position()
    #print(pos)
    axleft = pos.x0
    axbottom = pos.y0
    axright = pos.x0 + pos.width
    axtop = pos.y0 + pos.height

    print(axleft)
    print(axbottom)
    print(axright)
    print(axtop)

    #cax = plt.fig.add_axes([axleft+wskip, axtop+0.01, axright-axleft-2*wskip, 0.01])
    cax = plt.fig.add_axes(
        [axright + pad, axbottom + wskip, 0.01, axtop - axbottom - 2 * wskip])

    cb = plt.fig.colorbar(im,
                          cax=cax,
                          orientation='vertical',
                          ticklocation='right')
    #cb.set_label(args['title'])

    cax.text(1.0, 1.03, args['title'], transform=cax.transAxes)

    #if do_dark:
    #    for axis in ['top', 'bottom', 'left', 'right']:
    #        cax.spines[axis].set_visible(False)
    #        #cax.spines[axis].set_linewidth(0)
    #        #cax.spines[axis].set_color('red')
    #ax.set_title(title)

    #plot2d_particles(ax, info, args)
    if do_prtcls:
        plot2d_particles(ax, info, args)

        # if plotting with particles; add a tag to name
        varp = var + '_p'
    else:
        varp = var

    slap = str(info['lap']).rjust(4, '0')
    if do_dark:
        fname = fdir + varp + '_{}.png'.format(slap)
        plt.savefig(fname)
    else:
        fname = fdir + varp + '_{}.pdf'.format(slap)
        plt.savefig(fname)
    cb.remove()
            fig.set_size_inches(6, 10)
            plt.suptitle(file_iden + '\n nrn # {}'.format(nrn_num))
            fig.savefig(os.path.join(\
                    plot_dir,'{}_nrn{}_raster'\
                    .format(file_iden,nrn_num)))

            # Firing rate for all trials
            fig, ax = plt.subplots(off_firing.shape[0],
                                   1,
                                   sharex=True,
                                   sharey=True)
            for taste in range(off_firing.shape[0]):
                concat_firng_rate = np.concatenate(\
                            (off_firing[taste,:,nrn_num], on_firing[taste,:,nrn_num]))
                plt.sca(ax[taste])
                visualize.imshow(concat_firng_rate)
            fig.set_size_inches(6, 10)
            plt.suptitle(file_iden + '\n nrn # {}'.format(nrn_num))
            fig.savefig(os.path.join(\
                    plot_dir,'{}_nrn{}_all_firing'\
                    .format(file_iden,nrn_num)))

            # Firing rate
            fig, ax = plt.subplots(off_firing.shape[0],
                                   1,
                                   sharex=True,
                                   sharey=True)
            for taste in range(off_firing.shape[0]):
                mean_off = np.mean(off_firing[taste, :, nrn_num], axis=0)
                std_off = np.std(off_firing[taste, :, nrn_num], axis=0)
                mean_on = np.mean(on_firing[taste, :, nrn_num], axis=0)
Ejemplo n.º 16
0
        print("atmosphere max dens: ", np.nanmax(meshesL['data']))
        norm_fac = np.nanmax(meshesL['data'])
        #print(norm_fac)
        meshesL['data'] = meshesL['data'] / norm_fac

        if useLog:
            meshesL['data'] = np.log10(meshesL['data'])

        imL = imshow(
            axs[0],
            meshesL['data'],
            xmin,
            xmax,
            meshesL['vmin'],
            meshesL['vmax'],
            cmap='plasma_r',
            #vmin =   0.0,
            #vmax =   1.0,
            #clip =   1.0e-5,
            vmin=-3.0,
            vmax=0,
            clip=None)

        # read right
        ##################################################
        meshesR = get_1d_meshes(prefix, lap, conf, 1, vdir)

        print("beam max dens:", np.nanmax(meshesR['data']))
        #norm_fac = np.max(meshesR['data'])
        norm_fac = np.nanmax(meshesR['data'])
        meshesR['data'] = meshesR['data'] / norm_fac
Ejemplo n.º 17
0
        ##################################################
        # visualize

        #print(np.max(data))
        data = data/data.max()

        xmin = 0.0
        ymin = 0.0
        xmax = conf.dx*conf.Nx*conf.NxMesh
        ymax = conf.dy*conf.Ny*conf.NyMesh

        imshow(axs[0], data,
               xmin, xmax,
               vmin, vmax,
               cmap = 'plasma_r',
               vmin =   0.0,
               vmax =   1.0,
               clip =   0.0,
               )

        if vdir == "x":
            if ispcs == 0:
                axs[0].set_ylabel(r'$v_{x,e}$')
            if ispcs == 1:
                axs[0].set_ylabel(r'$v_{x,p}$')
        if vdir == "y":
            if ispcs == 0:
                axs[0].set_ylabel(r'$v_{y,e}$')
            if ispcs == 1:
                axs[0].set_ylabel(r'$v_{y,p}$')