Ejemplo n.º 1
0
 def model(self, x):
     layout = fastpm.decompose(x, pm=self.pm)
     x1 = fastpm.exchange(x, layout)
     y1 = fastpm.paint(x1, mass=1.0, layout=None, pm=self.pm)
     y = linalg.add(y1,
                    self.mesh)  # biasing a bit to get non-zero derivatives.
     return y
Ejemplo n.º 2
0
def LDL(param, X, pm, Nstep, baryon=True):

    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    X = Displacement(param, X, pm, Nstep)

    #paint particle overdensity field
    layout = fastpm.decompose(X, pm)
    Xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(Xl, 1., None, pm)

    if baryon:
        #take parameters
        mu = linalg.take(param, 5*Nstep, axis=0)
        b1 = linalg.take(param, 5*Nstep+1, axis=0)
        b0 = linalg.take(param, 5*Nstep+2, axis=0)
    
        mu = mpi.allbcast(mu, comm=pm.comm)
        mu = linalg.broadcast_to(mu, eval(delta, lambda x : x.shape))
        b1 = mpi.allbcast(b1, comm=pm.comm)
        b1 = linalg.broadcast_to(b1, eval(delta, lambda x : x.shape))
        b0 = mpi.allbcast(b0, comm=pm.comm)
        b0 = linalg.broadcast_to(b0, eval(delta, lambda x : x.shape))
    
        #Field transformation
        F = ReLU(b1 * (delta+1e-8) ** mu + b0) #definition of b0 is different from the paper
    else:
        F = delta
    
    return F
Ejemplo n.º 3
0
def LDL(param, X, pm, Nstep, baryon=True):

    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    X = Displacement(param, X, pm, Nstep)

    #paint particle overdensity field
    layout = fastpm.decompose(X, pm)
    Xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(Xl, 1., None, pm)

    if baryon:
        #take parameters
        gamma = linalg.take(param, 5*Nstep, axis=0)
        bias0 = linalg.take(param, 5*Nstep+1, axis=0)
        bias1 = linalg.take(param, 5*Nstep+2, axis=0)
    
        gamma = mpi.allbcast(gamma, comm=pm.comm)
        gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape))
        bias0 = mpi.allbcast(bias0, comm=pm.comm)
        bias0 = linalg.broadcast_to(bias0, eval(delta, lambda x : x.shape))
        bias1 = mpi.allbcast(bias1, comm=pm.comm)
        bias1 = linalg.broadcast_to(bias1, eval(delta, lambda x : x.shape))
    
        #Field transformation
        F = ReLU(bias0 * (delta+1e-8) ** gamma + bias1)
    else:
        F = delta
    
    return F
Ejemplo n.º 4
0
def PGD_correction(X, alpha, kl, ks, pm, q):

    layout = fastpm.decompose(X, pm)
    xl = fastpm.exchange(X, layout)

    rho = fastpm.paint(xl, 1.0, None, pm)
    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(q))
    rho = rho * fac

    rhok = fastpm.r2c(rho)

    p = fastpm.apply_transfer(rhok, PGDkernel(kl, ks))

    r1 = []
    for d in range(pm.ndim):
        dx1_c = fastpm.apply_transfer(
            p, fastpm.fourier_space_neg_gradient(d, pm, order=1))
        dx1_r = fastpm.c2r(dx1_c)
        dx1l = fastpm.readout(dx1_r, xl, None)
        dx1 = fastpm.gather(dx1l, layout)
        r1.append(dx1)

    S = linalg.stack(r1, axis=-1)

    S = S * alpha

    return S
Ejemplo n.º 5
0
    def model(self, x):

        compensation = self.pm.resampler.get_compensation()
        layout = vmadfastpm.decompose(self.w, self.pm)
        map = vmadfastpm.paint(self.w, x, layout, self.pm)
        y = map + self.xx  # bias needed to avoid zero derivative
        # compensation for cic window
        c = vmadfastpm.r2c(y)
        c = vmadfastpm.apply_transfer(c,
                                      lambda k: compensation(k, 1.0),
                                      kind='circular')
        map = vmadfastpm.c2r(c)

        return map
Ejemplo n.º 6
0
    def makemap(self, xy, w):
        """
        paint projected particles to 2D mesh
        xy: particle positions in radians
        w:  weighting = projection kernel
        """
        if (self.mappm.affine.period != 0).any():
            raise RuntimeError("The ParticeMesh object must be non-periodic")
        if self.mappm.ndim != 2:
            raise RuntimeError(
                "The ParticeMesh object must be 2 dimensional. ")

        compensation = self.mappm.resampler.get_compensation()

        layout = fastpm.decompose(xy, self.mappm)
        map = fastpm.paint(xy, w, layout, self.mappm)
        # compensation for cic window
        c = fastpm.r2c(map)
        c = fastpm.apply_transfer(c,
                                  lambda k: compensation(k, 1.0),
                                  kind='circular')
        map = fastpm.c2r(c)

        return map
Ejemplo n.º 7
0
def Displacement(param, X, pm, Nstep):

    #Lagrangian displacement

    #normalization constant for overdensity 
    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    for i in range(Nstep):

        #move the particles across different MPI ranks
        layout = fastpm.decompose(X, pm)
        xl = fastpm.exchange(X, layout)
        delta = fac * fastpm.paint(xl, 1.0, None, pm)

        #take parameters
        alpha = linalg.take(param, 5*i, axis=0)
        gamma = linalg.take(param, 5*i+1, axis=0)
        kh = linalg.take(param, 5*i+2, axis=0)
        kl = linalg.take(param, 5*i+3, axis=0)
        n = linalg.take(param, 5*i+4, axis=0)
        
        #delta**gamma
        gamma = mpi.allbcast(gamma, comm=pm.comm)
        gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape)) 
        delta = (delta+1e-8) ** gamma

        #Fourier transform
        deltak = fastpm.r2c(delta)

        #Green's operator in Fourier space
        Filter = Literal(pm.create(type='complex', value=1).apply(lambda k, v: k.normp(2, zeromode=1e-8) ** 0.5))
        kh = mpi.allbcast(kh, comm=pm.comm)
        kh = linalg.broadcast_to(kh, eval(Filter, lambda x : x.shape)) 
        kl = mpi.allbcast(kl, comm=pm.comm)
        kl = linalg.broadcast_to(kl, eval(Filter, lambda x : x.shape)) 
        n = mpi.allbcast(n, comm=pm.comm)
        n = linalg.broadcast_to(n, eval(Filter, lambda x : x.shape)) 
        
        Filter = - unary.exp(-Filter**2/kl**2) * unary.exp(-kh**2/Filter**2) * Filter**n
        Filter = compensate2factor(Filter) 

        p = complex_mul(deltak, Filter)

        #gradient of potential
        r1 = []
        for d in range(pm.ndim):
            dx1_c = fastpm.apply_transfer(p, fastpm.fourier_space_neg_gradient(d, pm, order=1))
            dx1_r = fastpm.c2r(dx1_c)
            dx1l = fastpm.readout(dx1_r, xl, None)
            dx1 = fastpm.gather(dx1l, layout)
            r1.append(dx1)

        #displacement
        S = linalg.stack(r1, axis=-1)
        alpha = mpi.allbcast(alpha, comm=pm.comm)
        alpha = linalg.broadcast_to(alpha, eval(S, lambda x : x.shape)) 
        S = S * alpha

        X = X+S
        
    return X
Ejemplo n.º 8
0
 def model(self, x):
     layout = fastpm.decompose(x, pm=self.pm)
     y = fastpm.paint(x, layout=layout, mass=1.0, pm=self.pm)
     y = linalg.add(y,
                    self.mesh)  # biasing a bit to get non-zero derivatives.
     return y